Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718.
Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.
Proc Natl Acad Sci U S A. 2019 Jun 4;116(23):11408-11417. doi: 10.1073/pnas.1903244116. Epub 2019 May 16.
Thioredoxin reductase-1 (TrxR1)-, glutathione reductase (Gsr)-, and Nrf2 transcription factor-driven antioxidant systems form an integrated network that combats potentially carcinogenic oxidative damage yet also protects cancer cells from oxidative death. Here we show that although unchallenged wild-type (WT), TrxR1-null, or Gsr-null mouse livers exhibited similarly low DNA damage indices, these were 100-fold higher in unchallenged TrxR1/Gsr-double-null livers. Notwithstanding, spontaneous cancer rates remained surprisingly low in TrxR1/Gsr-null livers. All genotypes, including TrxR1/Gsr-null, were susceptible to -diethylnitrosamine (DEN)-induced liver cancer, indicating that loss of these antioxidant systems did not prevent cancer cell survival. Interestingly, however, following DEN treatment, TrxR1-null livers developed threefold fewer tumors compared with WT livers. Disruption of TrxR1 in a marked subset of DEN-initiated cancer cells had no effect on their subsequent contributions to tumors, suggesting that TrxR1-disruption does not affect cancer progression under normal care, but does decrease the frequency of DEN-induced cancer initiation. Consistent with this idea, TrxR1-null livers showed altered basal and DEN-exposed metabolomic profiles compared with WT livers. To examine how oxidative stress influenced cancer progression, we compared DEN-induced cancer malignancy under chronically low oxidative stress (TrxR1-null, standard care) vs. elevated oxidative stress (TrxR1/Gsr-null livers, standard care or phenobarbital-exposed TrxR1-null livers). In both cases, elevated oxidative stress was correlated with significantly increased malignancy. Finally, although TrxR1-null and TrxR1/Gsr-null livers showed strong Nrf2 activity in noncancerous hepatocytes, there was no correlation between malignancy and Nrf2 expression within tumors across genotypes. We conclude that TrxR1, Gsr, Nrf2, and oxidative stress are major determinants of liver cancer but in a complex, context-dependent manner.
硫氧还蛋白还原酶 1(TrxR1)-、谷胱甘肽还原酶(Gsr)-和 Nrf2 转录因子驱动的抗氧化系统形成一个整合的网络,可对抗潜在的致癌氧化损伤,同时还可保护癌细胞免受氧化死亡。在这里,我们表明,尽管未受到挑战的野生型(WT)、TrxR1 缺陷型或 Gsr 缺陷型小鼠肝脏表现出相似低的 DNA 损伤指数,但在未受到挑战的 TrxR1/Gsr 双缺陷型肝脏中,这些指数高出 100 倍。尽管如此,在 TrxR1/Gsr 双缺陷型肝脏中,自发癌症的发生率仍然惊人地低。所有基因型,包括 TrxR1/Gsr 双缺陷型,都容易受到 -二乙基亚硝胺(DEN)诱导的肝癌的影响,这表明这些抗氧化系统的缺失并没有阻止癌细胞的存活。有趣的是,然而,在用 DEN 处理后,TrxR1 缺陷型肝脏比 WT 肝脏形成的肿瘤少三倍。在 DEN 起始的癌细胞的一个显著亚群中破坏 TrxR1 对其随后对肿瘤的贡献没有影响,这表明 TrxR1 破坏在正常护理下不影响癌症的进展,但确实会降低 DEN 诱导的癌症起始的频率。与这一观点一致,TrxR1 缺陷型肝脏与 WT 肝脏相比表现出不同的基础和 DEN 暴露的代谢组学特征。为了研究氧化应激如何影响癌症的进展,我们比较了在慢性低氧化应激下(TrxR1 缺陷型,标准护理)与氧化应激升高(TrxR1/Gsr 缺陷型肝脏,标准护理或苯巴比妥暴露的 TrxR1 缺陷型肝脏)下 DEN 诱导的癌症恶性程度。在这两种情况下,氧化应激的升高与恶性程度的显著增加相关。最后,尽管 TrxR1 缺陷型和 TrxR1/Gsr 缺陷型肝脏在非癌性肝细胞中表现出强烈的 Nrf2 活性,但在不同基因型的肿瘤内,恶性程度与 Nrf2 表达之间没有相关性。我们得出的结论是,TrxR1、Gsr、Nrf2 和氧化应激是肝癌的主要决定因素,但以复杂的、依赖于背景的方式。