Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
Department of Emergency Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
JAMA. 2019 May 28;321(20):2003-2017. doi: 10.1001/jama.2019.5791.
Sepsis is a heterogeneous syndrome. Identification of distinct clinical phenotypes may allow more precise therapy and improve care.
To derive sepsis phenotypes from clinical data, determine their reproducibility and correlation with host-response biomarkers and clinical outcomes, and assess the potential causal relationship with results from randomized clinical trials (RCTs).
DESIGN, SETTINGS, AND PARTICIPANTS: Retrospective analysis of data sets using statistical, machine learning, and simulation tools. Phenotypes were derived among 20 189 total patients (16 552 unique patients) who met Sepsis-3 criteria within 6 hours of hospital presentation at 12 Pennsylvania hospitals (2010-2012) using consensus k means clustering applied to 29 variables. Reproducibility and correlation with biological parameters and clinical outcomes were assessed in a second database (2013-2014; n = 43 086 total patients and n = 31 160 unique patients), in a prospective cohort study of sepsis due to pneumonia (n = 583), and in 3 sepsis RCTs (n = 4737).
All clinical and laboratory variables in the electronic health record.
Derived phenotype (α, β, γ, and δ) frequency, host-response biomarkers, 28-day and 365-day mortality, and RCT simulation outputs.
The derivation cohort included 20 189 patients with sepsis (mean age, 64 [SD, 17] years; 10 022 [50%] male; mean maximum 24-hour Sequential Organ Failure Assessment [SOFA] score, 3.9 [SD, 2.4]). The validation cohort included 43 086 patients (mean age, 67 [SD, 17] years; 21 993 [51%] male; mean maximum 24-hour SOFA score, 3.6 [SD, 2.0]). Of the 4 derived phenotypes, the α phenotype was the most common (n = 6625; 33%) and included patients with the lowest administration of a vasopressor; in the β phenotype (n = 5512; 27%), patients were older and had more chronic illness and renal dysfunction; in the γ phenotype (n = 5385; 27%), patients had more inflammation and pulmonary dysfunction; and in the δ phenotype (n = 2667; 13%), patients had more liver dysfunction and septic shock. Phenotype distributions were similar in the validation cohort. There were consistent differences in biomarker patterns by phenotype. In the derivation cohort, cumulative 28-day mortality was 287 deaths of 5691 unique patients (5%) for the α phenotype; 561 of 4420 (13%) for the β phenotype; 1031 of 4318 (24%) for the γ phenotype; and 897 of 2223 (40%) for the δ phenotype. Across all cohorts and trials, 28-day and 365-day mortality were highest among the δ phenotype vs the other 3 phenotypes (P < .001). In simulation models, the proportion of RCTs reporting benefit, harm, or no effect changed considerably (eg, varying the phenotype frequencies within an RCT of early goal-directed therapy changed the results from >33% chance of benefit to >60% chance of harm).
In this retrospective analysis of data sets from patients with sepsis, 4 clinical phenotypes were identified that correlated with host-response patterns and clinical outcomes, and simulations suggested these phenotypes may help in understanding heterogeneity of treatment effects. Further research is needed to determine the utility of these phenotypes in clinical care and for informing trial design and interpretation.
脓毒症是一种异质综合征。识别不同的临床表型可能允许更精确的治疗,并改善护理。
从临床数据中得出脓毒症表型,确定其可重复性,以及与宿主反应生物标志物和临床结局的相关性,并评估与随机临床试验(RCT)结果的潜在因果关系。
设计、地点和参与者:使用统计、机器学习和模拟工具对数据集进行回顾性分析。在宾夕法尼亚州 12 家医院的 2010 年至 2012 年期间,对符合 Sepsis-3 标准的 20189 名患者(16552 名患者)的临床数据进行了统计分析,应用共识 k 均值聚类对 29 个变量进行了分析。在第二个数据库(2013-2014 年;总患者数为 43086 名,患者数为 31160 名)、肺炎引起的脓毒症前瞻性队列研究(n=583)和 3 项脓毒症 RCT(n=4737)中评估了可重复性和与生物学参数及临床结局的相关性。
电子健康记录中的所有临床和实验室变量。
衍生的表型(α、β、γ和δ)频率、宿主反应生物标志物、28 天和 365 天死亡率以及 RCT 模拟结果。
该队列包括 20189 名脓毒症患者(平均年龄 64[标准差 17]岁;10022 名[50%]男性;平均最大 24 小时序贯器官衰竭评估[SOFA]评分 3.9[标准差 2.4])。验证队列包括 43086 名患者(平均年龄 67[标准差 17]岁;21993 名[51%]男性;平均最大 24 小时 SOFA 评分 3.6[标准差 2.0])。在这 4 种衍生的表型中,最常见的是α表型(n=6625;33%),包括接受血管加压药治疗最少的患者;在β表型(n=5512;27%)中,患者年龄较大,患有更多的慢性疾病和肾功能障碍;在γ表型(n=5385;27%)中,患者炎症和肺功能障碍更多;在δ表型(n=2667;13%)中,患者肝功能障碍和感染性休克更多。验证队列中的表型分布相似。表型之间的生物标志物模式存在一致差异。在原始队列中,28 天累计死亡率为 5691 名独特患者中的 287 名死亡(5%),α表型为 561 名(13%),β表型为 1031 名(24%),γ表型为 897 名(40%),δ表型为 2667 名(40%)。在所有队列和试验中,与其他 3 种表型相比,δ表型的 28 天和 365 天死亡率最高(P<0.001)。在模拟模型中,报告获益、危害或无影响的 RCT 比例发生了很大变化(例如,改变 RCT 中早期目标导向治疗的表型频率会使获益的可能性从>33%变为>60%)。
在对脓毒症患者的数据集进行回顾性分析中,确定了 4 种临床表型,这些表型与宿主反应模式和临床结局相关,模拟结果表明这些表型可能有助于理解治疗效果的异质性。需要进一步研究来确定这些表型在临床护理中的应用价值,以及为临床试验设计和解释提供信息。