Suppr超能文献

一种测量鞋底-地面-流体界面流体压力的方法:在鞋底花纹评估中的应用。

A Method for Measuring Fluid Pressures in the Shoe-Floor-Fluid Interface: Application to Shoe Tread Evaluation.

作者信息

Singh Gurjeet, Beschorner Kurt E

机构信息

Department of Industrial and Manufacturing Engineering, University of Wisconsin- Milwaukee, Milwaukee, WI, USA.

Department of Bioengineering, University of Pittsburgh, 3700 O'Hara St. #302, Pittsburgh, PA 15261, USA.

出版信息

IIE Trans Occup. 2014;2(2):53-59. doi: 10.1080/21577323.2014.919367. Epub 2014 Nov 24.

Abstract

BACKGROUND

Fluid contaminants cause slipping accidents by reducing shoe-floor friction. Fluid pressures in the shoe-floor interface reduce contact between the surfaces and, thus, reduce friction between the surfaces. A technological gap for measuring fluid pressures, however, has impeded improved understanding of what factors influence these pressures.

PURPOSE

This study aimed to introduce a technique for measuring fluid pressures under the shoe and to demonstrate the utility of the technique by quantifying the effects of tread depth and fluid viscosity on fluid pressures for two different shoes.

METHODS

A fluid pressure sensor embedded in the floor surface was used to measure fluid pressures, while a robotic slip-tester traversed the shoe over the floor surface. Multiple scans were collected to develop 2D fluid pressure maps across the shoe surface. Two shoe tread types (an athletic shoe and a work shoe), two fluids (high-viscosity diluted glycerol and a low-viscosity detergent solution), and three tread depths (full tread, half tread, and no tread) were tested, while fluid pressures were measured.

RESULTS

Untreaded shoes combined with a high-viscosity fluid resulted in high fluid pressures, while treaded shoes or low-viscosity fluids resulted in low fluid pressures. The increased fluid pressures that were observed for the untreaded shoes are consistent with tribology theory and evidence from human slipping studies.

CONCLUSIONS

The methods described here successfully measured fluid pressures and yielded results consistent with tribological theory and human slipping experiments. This approach offers significant potential in evaluating the slip-resistance of tread designs and determining wear limits for replacing shoes.

摘要

背景

液体污染物会降低鞋底与地面之间的摩擦力,从而导致滑倒事故。鞋底与地面界面处的液体压力会减少表面之间的接触,进而降低表面之间的摩擦力。然而,测量液体压力的技术差距阻碍了人们对影响这些压力的因素的深入理解。

目的

本研究旨在介绍一种测量鞋底下方液体压力的技术,并通过量化两种不同鞋子的胎面深度和液体粘度对液体压力的影响来证明该技术的实用性。

方法

使用嵌入地面表面的液体压力传感器测量液体压力,同时让一个机器人防滑测试仪在地面上移动鞋子。收集多次扫描数据以生成整个鞋表面的二维液体压力图。测试了两种鞋的胎面类型(运动鞋和工作鞋)、两种液体(高粘度稀释甘油和低粘度洗涤剂溶液)以及三种胎面深度(全胎面、半胎面和无胎面),并测量了液体压力。

结果

无胎面的鞋子与高粘度液体相结合会导致液体压力较高,而有胎面的鞋子或低粘度液体则会导致液体压力较低。无胎面鞋子观察到的液体压力增加与摩擦学理论以及人体滑倒研究的证据一致。

结论

这里描述的方法成功测量了液体压力,并得出了与摩擦学理论和人体滑倒实验一致的结果。这种方法在评估胎面设计的防滑性能和确定更换鞋子的磨损极限方面具有巨大潜力。

相似文献

1
A Method for Measuring Fluid Pressures in the Shoe-Floor-Fluid Interface: Application to Shoe Tread Evaluation.
IIE Trans Occup. 2014;2(2):53-59. doi: 10.1080/21577323.2014.919367. Epub 2014 Nov 24.
2
Fluid pressures at the shoe-floor-contaminant interface during slips: effects of tread and implications on slip severity.
J Biomech. 2014 Jan 22;47(2):458-63. doi: 10.1016/j.jbiomech.2013.10.046. Epub 2013 Nov 8.
3
Traction performance across the life of slip-resistant footwear: Preliminary results from a longitudinal study.
J Safety Res. 2020 Sep;74:219-225. doi: 10.1016/j.jsr.2020.06.005. Epub 2020 Jul 9.
4
Shoe sole tread designs and outcomes of slipping and falling on slippery floor surfaces.
PLoS One. 2013 Jul 24;8(7):e68989. doi: 10.1371/journal.pone.0068989. Print 2013.
5
Changes in under-shoe traction and fluid drainage for progressively worn shoe tread.
Appl Ergon. 2019 Oct;80:35-42. doi: 10.1016/j.apergo.2019.04.014. Epub 2019 May 15.
6
Worn region size of shoe outsole impacts human slips: Testing a mechanistic model.
J Biomech. 2020 May 22;105:109797. doi: 10.1016/j.jbiomech.2020.109797. Epub 2020 Apr 18.
8
Biomechanical modeling of footwear-fluid-floor interaction during slips.
J Biomech. 2023 Jul;156:111690. doi: 10.1016/j.jbiomech.2023.111690. Epub 2023 Jun 20.
9
Gait kinetics impact shoe tread wear rate.
Gait Posture. 2021 May;86:157-161. doi: 10.1016/j.gaitpost.2021.03.006. Epub 2021 Mar 8.
10
Validation of a portable shoe tread scanner to predict slip risk.
J Safety Res. 2023 Sep;86:5-11. doi: 10.1016/j.jsr.2023.05.014. Epub 2023 May 27.

引用本文的文献

2
Validation of a portable shoe tread scanner to predict slip risk.
J Safety Res. 2023 Sep;86:5-11. doi: 10.1016/j.jsr.2023.05.014. Epub 2023 May 27.
3
Effects of natural shoe wear on traction performance: a longitudinal study.
Footwear Sci. 2022;14(1):1-12. doi: 10.1080/19424280.2021.1994022. Epub 2021 Nov 11.
4
Computational Model of Shoe Wear Progression: Comparison with Experimental Results.
Wear. 2019 Mar 15;422-423:235-241. doi: 10.1016/j.wear.2019.01.070.
5
Traction performance across the life of slip-resistant footwear: Preliminary results from a longitudinal study.
J Safety Res. 2020 Sep;74:219-225. doi: 10.1016/j.jsr.2020.06.005. Epub 2020 Jul 9.
6
Predicting Hydrodynamic Conditions under Worn Shoes using the Tapered-Wedge Solution of Reynolds Equation.
Tribol Int. 2020 May;145. doi: 10.1016/j.triboint.2020.106161. Epub 2020 Jan 8.
7
An observational ergonomic tool for assessing the worn condition of slip-resistant shoes.
Appl Ergon. 2020 Oct;88:103140. doi: 10.1016/j.apergo.2020.103140. Epub 2020 May 20.
8
Worn region size of shoe outsole impacts human slips: Testing a mechanistic model.
J Biomech. 2020 May 22;105:109797. doi: 10.1016/j.jbiomech.2020.109797. Epub 2020 Apr 18.
9
Generalizability of Footwear Traction Performance across Flooring and Contaminant Conditions.
IISE Trans Occup Ergon Hum Factors. 2018;6(2):98-108. doi: 10.1080/24725838.2018.1517702. Epub 2018 Dec 11.
10
Prediction of coefficient of friction based on footwear outsole features.
Appl Ergon. 2020 Jan;82:102963. doi: 10.1016/j.apergo.2019.102963. Epub 2019 Nov 1.

本文引用的文献

2
The influence of footwear tread groove parameters on available friction.
Appl Ergon. 2015 Sep;50:237-41. doi: 10.1016/j.apergo.2015.03.018. Epub 2015 Apr 21.
3
Fluid pressures at the shoe-floor-contaminant interface during slips: effects of tread and implications on slip severity.
J Biomech. 2014 Jan 22;47(2):458-63. doi: 10.1016/j.jbiomech.2013.10.046. Epub 2013 Nov 8.
4
Prediction of slips: an evaluation of utilized coefficient of friction and available slip resistance.
Ergonomics. 2006 Aug 15;49(10):982-95. doi: 10.1080/00140130600665687.
6
Development and validation of a novel portable slip simulator.
Appl Ergon. 2005 Sep;36(5):585-93. doi: 10.1016/j.apergo.2005.01.015. Epub 2005 Mar 26.
8
Changes in gait when anticipating slippery floors.
Gait Posture. 2002 Apr;15(2):159-71. doi: 10.1016/s0966-6362(01)00150-3.
9
The role of friction in the measurement of slipperiness, Part 2: survey of friction measurement devices.
Ergonomics. 2001 Oct 20;44(13):1233-61. doi: 10.1080/00140130110085583.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验