Suppr超能文献

不同大小和带电的银纳米粒子对酵母 BY4741 的毒性:一种纳米-生物相互作用的观点。

Toxicity of differently sized and charged silver nanoparticles to yeast BY4741: a nano-biointeraction perspective.

机构信息

Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia.

Department of Earth and Environmental Sciences, Research Centre POLARIS, University of Milano-Bicocca , Milano , Italy.

出版信息

Nanotoxicology. 2019 Oct;13(8):1041-1059. doi: 10.1080/17435390.2019.1621401. Epub 2019 Jun 20.

Abstract

In the current study, we evaluated the modulatory effects of size and surface coating/charge of AgNPs on their toxicity to a unicellular yeast BY4741 - a fungal model. For that, the toxicity of a set of 10 and 80 nm citrate-coated (negatively charged) and branched polyethylenimine (bPEI) coated (positively charged) AgNPs was evaluated in parallel with AgNO as ionic control. Yeast cells were exposed to different concentrations of studied compounds in deionized water for 24 h at 30 °C and evaluated for the viability by the post-exposure colony-forming ability. Particle-cell interactions were assessed by SEM, TEM and confocal laser scanning microscopy (CLSM) in the reflection mode. AgNPs toxicity to yeast was size and charge-dependent: 24-h IC values ranged from 0.04 (10nAg-bPEI) up to 8.3 mg Ag/L (80nAg-Cit). 10 nm AgNPs were 5-27 times more toxic than 80 nm AgNPs and bPEI-AgNPs 8-44 times more toxic than citrate-AgNPs. SEM and TEM visualization showed that bPEI-AgNPs but not citrate-AgNPs adsorbed onto the yeast cell's surface. However, according to CLSM all the studied AgNPs, whatever the size and coating, ended up within the yeast cell. Toxicity of citrate-AgNPs was largely explained by the dissolved Ag ions but the bPEI-AgNPs showed mainly particle-driven effects leading to the cellular internalization and/or to more pronounced dissolution of AgNPs in the close vicinity of the cell wall. Therefore, the size, and especially the coating/charge of AgNPs can be efficiently used for the design of new more efficient antifungals.

摘要

在本研究中,我们评估了 AgNPs 的尺寸和表面涂层/电荷对其毒性的调节作用,以评估其对单细胞酵母 BY4741(真菌模型)的毒性。为此,我们平行评估了一组 10nm 和 80nm 的柠檬酸涂层(带负电荷)和支化聚乙烯亚胺(bPEI)涂层(带正电荷)的 AgNPs 以及 AgNO3(离子对照)的毒性。酵母细胞在 30°C 下于去离子水中用不同浓度的研究化合物孵育 24 小时,通过孵育后集落形成能力评估其活力。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)和反射模式的共聚焦激光扫描显微镜(CLSM)评估颗粒-细胞相互作用。AgNPs 对酵母的毒性取决于尺寸和电荷:24 小时 IC 值范围从 0.04(10nAg-bPEI)到 8.3mg Ag/L(80nAg-Cit)。10nm 的 AgNPs 比 80nm 的 AgNPs 毒性高 5-27 倍,bPEI-AgNPs 比柠檬酸-AgNPs 毒性高 8-44 倍。SEM 和 TEM 可视化显示,bPEI-AgNPs 而非柠檬酸-AgNPs 吸附在酵母细胞表面。然而,根据 CLSM,所有研究的 AgNPs,无论尺寸和涂层如何,最终都进入了酵母细胞内。柠檬酸-AgNPs 的毒性在很大程度上可以用溶解的 Ag 离子来解释,但 bPEI-AgNPs 主要表现出颗粒驱动的效应,导致细胞内吞和/或更明显地在细胞壁附近溶解 AgNPs。因此,AgNPs 的尺寸,特别是其涂层/电荷,可以有效地用于设计新型更有效的抗真菌药物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验