Laboratory Images, Signals, and Intelligent Systems (LiSSi), University Paris-Est Créteil, 94400 Vitry sur Seine, France.
Magn Reson Imaging. 2019 Sep;61:41-65. doi: 10.1016/j.mri.2019.05.009. Epub 2019 May 17.
In this paper, we present a new multi-objective optimization approach for segmentation of Magnetic Resonance Imaging (MRI) of the human brain. The proposed algorithm not only takes advantages but also solves major drawbacks of two well-known complementary techniques, called fuzzy entropy clustering method and region-based active contour method, using multi-objective particle swarm optimization (MOPSO) approach. In order to obtain accurate segmentation results, firstly, two fitness functions with independent characteristics, compactness and separation, are derived from kernelized fuzzy entropy clustering with local spatial information and bias correction (KFECSB) and a novel adaptive energy weight combined with global and local fitting energy active contour (AWGLAC) model. Then, they are simultaneously optimized to finally produce a set of non-dominated solutions, from which L-metric method is used to select the best trade-off solution. Our algorithm is both verified and compared with other state-of-the-art methods using simulated MR images and real MR images from the McConnell Brain Imaging Center (BrainWeb) and the Internet Brain Segmentation Repository (IBSR), respectively. The experimental results demonstrate that the proposed technique achieves superior segmentation performance in terms of accuracy and robustness.
本文提出了一种新的多目标优化方法,用于分割磁共振成像(MRI)的人脑。所提出的算法不仅利用了两种著名的互补技术的优势,还解决了它们的主要缺点,这两种技术分别是模糊熵聚类方法和基于区域的主动轮廓方法,使用多目标粒子群优化(MOPSO)方法。为了获得准确的分割结果,首先,从具有局部空间信息和偏差校正的核模糊熵聚类(KFECSB)以及一种新的自适应能量权与全局和局部拟合能量主动轮廓(AWGLAC)模型中导出两个具有独立特征的适应度函数,即紧致度和分离度。然后,同时对它们进行优化,最终生成一组非支配解,其中使用 L 度量法来选择最佳折衷解。我们的算法使用模拟磁共振图像以及麦康奈尔脑成像中心(BrainWeb)和互联网脑分割库(IBSR)中的真实磁共振图像进行了验证和比较。实验结果表明,所提出的技术在准确性和鲁棒性方面具有优越的分割性能。