Suppr超能文献

通过非均相暗芬顿反应彻底降解环丙沙星上的 g-CN-铁氧化物复合材料。

Complete degradation of ciprofloxacin over g-CN-iron oxide composite via heterogeneous dark Fenton reaction.

机构信息

Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR.

Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR.

出版信息

J Environ Manage. 2019 Aug 15;244:23-32. doi: 10.1016/j.jenvman.2019.05.035. Epub 2019 May 17.

Abstract

Graphitic carbon nitride (g-CN) supported iron oxide (CN@IO) composite was first fabricated via synthesizing g-CN in-situ onto iron oxide. The fabricated CN@IO composite was characterized by several techniques including XRD, XPS, TEM and nitrogen adsorption-desorption analysis. This composite was then used as a catalyst for the dark Fenton oxidative degradation of ciprofloxacin (CIP). Results demonstrated that the incorporation of g-CN profoundly changed the structure and chemical properties of iron oxide, endowing CN@IO composites with high-efficient catalytic activity in dark Fenton system. In the synthesis process of CN@IO composites, iron oxide nanoparticles were successfully intercalated into the layers of g-CN, enlarging the surface area and thus providing more active sites for the reactions. Meanwhile, the existence of g-CN can accelerate the Fe/Fe redox cycle during the Fenton reaction, which further facilitated CIP degradation. In addition, the effects of reaction parameters, including pH, catalyst dosage, initial concentration of CIP and HO, on CIP degradation were investigated. Without any assistance of light irradiation, complete degradation and 48.5% mineralization of CIP were achieved under the best conditions of pH 3.0, 1 g/L CN@IO-2, 20 mg/L CIP and 0.0056 M HO. The trapping of iron oxide between g-CN layers helped to stabilize iron oxide so the metal leaching problem that usually occurred in acidic media (pH = 3) can be effectively overcome. This work provides a new thought to develop environmental-friendly and high-efficient catalysts for the degradation of refractory pollutants in dark Fenton system, which is much easier to scale up for industrial application comparing with the photo-Fenton reaction.

摘要

石墨相氮化碳负载氧化铁(CN@IO)复合材料首先通过在氧化铁上原位合成石墨相氮化碳来制备。所制备的 CN@IO 复合材料通过 XRD、XPS、TEM 和氮气吸附-脱附分析等多种技术进行了表征。然后,将该复合材料用作黑暗芬顿氧化降解环丙沙星(CIP)的催化剂。结果表明,g-CN 的掺入深刻改变了氧化铁的结构和化学性质,使 CN@IO 复合材料在黑暗芬顿体系中具有高效的催化活性。在 CN@IO 复合材料的合成过程中,氧化铁纳米粒子成功地嵌入到 g-CN 的层间,扩大了表面积,从而为反应提供了更多的活性位点。同时,g-CN 的存在可以加速芬顿反应过程中的 Fe/Fe 氧化还原循环,从而进一步促进 CIP 的降解。此外,还研究了反应参数,包括 pH 值、催化剂用量、CIP 的初始浓度和 HO 的影响对 CIP 降解的影响。在最佳条件下(pH 值为 3.0、CN@IO-2 用量为 1 g/L、CIP 初始浓度为 20 mg/L 和 HO 浓度为 0.0056 M),无需任何光照辅助,即可实现 CIP 的完全降解和 48.5%的矿化。g-CN 层之间的氧化铁夹杂物有助于稳定氧化铁,从而可以有效克服通常在酸性介质(pH = 3)中发生的金属浸出问题。这项工作为开发用于黑暗芬顿体系中难降解污染物降解的环保高效催化剂提供了新的思路,与光芬顿反应相比,该方法更易于工业化应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验