Suppr超能文献

完全湿润壁面上的几何诱导界面钉扎

Geometry-induced interface pinning at completely wet walls.

作者信息

Malijevský Alexandr

机构信息

Department of Physical Chemistry, University of Chemical Technology Prague, 166 28 Prague 6, Czech Republic and Department of Molecular and Mesoscopic Modelling, ICPF of the Czech Academy Sciences, 165 02 Prague 6, Czech Republic.

出版信息

Phys Rev E. 2019 Apr;99(4-1):040801. doi: 10.1103/PhysRevE.99.040801.

Abstract

We study complete wetting of solid walls that are patterned by parallel nanogrooves of depth D and width L with a periodicity of 2L. The wall is formed of a material which interacts with the fluid via a long-range potential and exhibits first-order wetting transition at temperature T_{w}, should the wall be planar. Using a nonlocal density functional theory we show that at a fixed temperature T>T_{w} the process of complete wetting depends sensitively on two microscopic length scales L_{c}^{+} and L_{c}^{-}. If the corrugation parameter L is greater than L_{c}^{+}, the process is continuous similar to complete wetting on a planar wall. For L_{c}^{-}<L<L_{c}^{+}, the complete wetting exhibits first-order depinning transition corresponding to an abrupt unbinding of the liquid-gas interface from the wall. Finally, for L<L_{c}^{-} the interface remains pinned at the wall even at bulk liquid-gas coexistence. This implies that nanomodification of substrate surfaces can always change their wetting character from hydrophilic into hydrophobic, in direct contrast to the macroscopic Wenzel law. The resulting surface phase diagram reveals a close analogy between the depinning and prewetting transitions including the nature of their critical points.

摘要

我们研究了由深度为D、宽度为L且周期为2L的平行纳米凹槽构成图案的固体壁的完全润湿情况。该壁由一种通过长程势与流体相互作用的材料形成,并且如果壁是平面的,则在温度Tw下会出现一级润湿转变。使用非局部密度泛函理论,我们表明在固定温度T>Tw时,完全润湿过程敏感地依赖于两个微观长度尺度Lc+和Lc-。如果波纹参数L大于Lc+,则该过程是连续的,类似于在平面壁上的完全润湿。对于Lc-<L<Lc+,完全润湿表现出一级脱钉转变,对应于液 - 气界面从壁上的突然解束缚。最后,对于L<Lc-,即使在体相液 - 气共存时,界面仍固定在壁上。这意味着与宏观的文策尔定律直接相反,基底表面的纳米改性总能将其润湿特性从亲水性转变为疏水性。所得的表面相图揭示了脱钉和预润湿转变之间的紧密类比,包括它们临界点的性质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验