Chittepu Veera C S R, Kalhotra Poonam, Osorio-Gallardo Tzayhri, Gallardo-Velázquez Tzayhri, Osorio-Revilla Guillermo
Departamento de Ingenieria Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Av. Wilfrido Massieu S/N, Col. Unidad Profesional Adolfo Lopez Mateos, Zacatenco, C.P. Ciudad de Mexico 07738, Mexico.
Departamento de Biofisica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Prolongacion de Carpio y Plan de Ayala S/N, Col. Santo Tomas, CP. Ciudad de Mexico 11340, Mexico.
Pharmaceutics. 2019 May 17;11(5):238. doi: 10.3390/pharmaceutics11050238.
A drug repurposing strategy could be a potential approach to overcoming the economic costs for diabetes mellitus (DM) treatment incurred by most countries. DM has emerged as a global epidemic, and an increase in the outbreak has led developing countries like Mexico, India, and China to recommend a prevention method as an alternative proposed by their respective healthcare sectors. Incretin-based therapy has been successful in treating diabetes mellitus, and inhibitors like sitagliptin, vildagliptin, saxagliptin, and alogliptin belong to this category. As of now, drug repurposing strategies have not been used to identify existing therapeutics that can become dipeptidyl peptidase-4 (DPP-4) inhibitors. Hence, this work presents the use of bioinformatics tools like the Activity Atlas model, flexible molecular docking simulations, and three-dimensional reference interaction site model (3D-RISM) calculations to assist in repurposing Food and Drug Administration (FDA)-approved drugs into specific nonsteroidal anti-inflammatory medications such as DPP-4 inhibitors. Initially, the Activity Atlas model was constructed based on the top scoring DPP-4 inhibitors, and then the model was used to understand features of nonsteroidal anti-inflammatory drugs (NSAIDs) as a function of electrostatic, hydrophobic, and active shape features of DPP-4 inhibition. The FlexX algorithm was used to infer protein-ligand interacting residues, and binding energy, to predict potential draggability towards the DPP-4 mechanism of action. 3D-RISM calculations on piroxicam-bound DPP-4 were used to understand the stability of water molecules at the active site. Finally, piroxicam was chosen as the repurposing drug to become a new DPP-4 inhibitor and validated experimentally using fluorescence spectroscopy assay. These findings are novel and provide new insights into the role of piroxicam as a new lead to inhibit DPP-4 and, taking into consideration the biological half-life of piroxicam, it can be proposed as a possible therapeutic strategy for treating diabetes mellitus.
药物重新利用策略可能是一种潜在的方法,可用于克服大多数国家在糖尿病(DM)治疗方面产生的经济成本。糖尿病已成为一种全球流行病,其发病率的上升促使墨西哥、印度和中国等发展中国家建议采用各自医疗保健部门提出的预防方法作为替代方案。基于肠促胰岛素的疗法已成功用于治疗糖尿病,西他列汀、维格列汀、沙格列汀和阿格列汀等抑制剂都属于这一类。截至目前,药物重新利用策略尚未用于识别可成为二肽基肽酶-4(DPP-4)抑制剂的现有治疗药物。因此,这项工作展示了如何使用生物信息学工具,如活性图谱模型、灵活分子对接模拟和三维参考相互作用位点模型(3D-RISM)计算,来协助将美国食品药品监督管理局(FDA)批准的药物重新用于特定的非甾体抗炎药物,如DPP-4抑制剂。最初,基于得分最高的DPP-4抑制剂构建活性图谱模型,然后使用该模型来了解非甾体抗炎药(NSAIDs)的特征,这些特征是DPP-4抑制的静电、疏水和活性形状特征的函数。使用FlexX算法推断蛋白质-配体相互作用残基和结合能,以预测对DPP-4作用机制的潜在可拖动性。对吡罗昔康结合的DPP-4进行3D-RISM计算,以了解活性位点水分子的稳定性。最后,选择吡罗昔康作为重新利用的药物,使其成为一种新的DPP-4抑制剂,并使用荧光光谱测定法进行实验验证。这些发现是新颖的,为吡罗昔康作为抑制DPP-4的新先导物的作用提供了新的见解,并且考虑到吡罗昔康的生物半衰期,可以将其作为治疗糖尿病的一种可能的治疗策略提出。