Departments of Vascular Medicine (M.A.W.v.d.B., J.K., G.M.D.-T., E.S.G.S., A.G.H.), Amsterdam University Medical Centers, location AMC, The Netherlands.
Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands.
Circulation. 2019 Jul 23;140(4):280-292. doi: 10.1161/CIRCULATIONAHA.118.036484. Epub 2019 May 23.
The importance of protein glycosylation in regulating lipid metabolism is becoming increasingly apparent. We set out to further investigate this by studying patients with type I congenital disorders of glycosylation (CDGs) with defective N-glycosylation.
We studied 29 patients with the 2 most prevalent types of type I CDG, ALG6 (asparagine-linked glycosylation protein 6)-deficiency CDG and PMM2 (phosphomannomutase 2)-deficiency CDG, and 23 first- and second-degree relatives with a heterozygous mutation and measured plasma cholesterol levels. Low-density lipoprotein (LDL) metabolism was studied in 3 cell models-gene silencing in HepG2 cells, patient fibroblasts, and patient hepatocyte-like cells derived from induced pluripotent stem cells-by measuring apolipoprotein B production and secretion, LDL receptor expression and membrane abundance, and LDL particle uptake. Furthermore, SREBP2 (sterol regulatory element-binding protein 2) protein expression and activation and endoplasmic reticulum stress markers were studied.
We report hypobetalipoproteinemia (LDL cholesterol [LDL-C] and apolipoprotein B below the fifth percentile) in a large cohort of patients with type I CDG (mean age, 9 years), together with reduced LDL-C and apolipoprotein B in clinically unaffected heterozygous relatives (mean age, 46 years), compared with 2 separate sets of age- and sex-matched control subjects. ALG6 and PMM2 deficiency led to markedly increased LDL uptake as a result of increased cell surface LDL receptor abundance. Mechanistically, this outcome was driven by increased SREBP2 protein expression accompanied by amplified target gene expression, resulting in higher LDL receptor protein levels. Endoplasmic reticulum stress was not found to be a major mediator.
Our study establishes N-glycosylation as an important regulator of LDL metabolism. Given that LDL-C was also reduced in a group of clinically unaffected heterozygotes, we propose that increasing LDL receptor-mediated cholesterol clearance by targeting N-glycosylation in the LDL pathway may represent a novel therapeutic strategy to reduce LDL-C and cardiovascular disease.
蛋白质糖基化在调节脂质代谢中的重要性日益明显。我们着手通过研究有缺陷的 N-糖基化的 1 型先天性糖基化障碍 (CDG) 患者来进一步研究这一点。
我们研究了 29 例最常见的 1 型 CDG 类型,即 ALG6(天冬酰胺连接糖蛋白 6)缺陷型 CDG 和 PMM2(磷酸甘露糖变位酶 2)缺陷型 CDG 患者,以及 23 名有杂合突变的一级和二级亲属,并测量了血浆胆固醇水平。通过测量载脂蛋白 B 的产生和分泌、低密度脂蛋白 (LDL) 受体的表达和膜丰度以及 LDL 颗粒摄取,研究了 HepG2 细胞、患者成纤维细胞和患者诱导多能干细胞衍生的肝细胞样细胞中的基因沉默、患者成纤维细胞和患者诱导多能干细胞衍生的肝细胞样细胞这 3 种细胞模型中的 LDL 代谢。此外,还研究了 SREBP2(固醇调节元件结合蛋白 2)蛋白表达和激活以及内质网应激标志物。
我们报告了一大群 1 型 CDG 患者(平均年龄 9 岁)存在低β脂蛋白血症(LDL 胆固醇 [LDL-C] 和载脂蛋白 B 低于第 5 百分位),以及临床无影响的杂合亲属(平均年龄 46 岁)的 LDL-C 和载脂蛋白 B 降低,与 2 组年龄和性别匹配的对照相比。ALG6 和 PMM2 缺陷导致 LDL 受体表面丰度增加,导致 LDL 摄取显着增加。从机制上讲,这种结果是由 SREBP2 蛋白表达增加伴扩增的靶基因表达驱动的,导致 LDL 受体蛋白水平升高。未发现内质网应激是主要介导者。
我们的研究确立了 N-糖基化是 LDL 代谢的重要调节剂。鉴于 LDL-C 在一组临床无影响的杂合子中也降低,我们提出通过靶向 LDL 途径中的 N-糖基化增加 LDL 受体介导的胆固醇清除可能代表降低 LDL-C 和心血管疾病的一种新的治疗策略。