Suppr超能文献

用于临床工作流程预测的信息自适应机器学习模型

Information Adapted Machine Learning Models for Prediction in Clinical Workflow.

作者信息

Jauk Stefanie, Kramer Diether, Quehenberger Franz, Veeranki Sai Pavan Kumar, Hayn Dieter, Schreier Günter, Leodolter Werner

机构信息

CBmed, Graz, Austria.

Steiermärkische Krankenanstaltengesellschaft m.b.H. (KAGes), Graz, Austria.

出版信息

Stud Health Technol Inform. 2019;260:65-72.

Abstract

BACKGROUND

In a database of electronic health records, the amount of available information varies widely between patients. In a real-time prediction scenario, a machine learning model may receive limited information for some patients.

OBJECTIVES

Our aim was to evaluate the influence of missing data on real-time prediction of delirium, and detect changes in prediction performance when training separate models for patients with missing data.

METHODS

We compared a model trained specifically on data with missing values to the currently implemented model predicting delirium. Also, we simulated five test data sets with different amount of missing data and compared the prediction results to the prediction on complete data set when using the same model.

RESULTS

For patients with missing laboratory and nursing assessment data, a model trained especially for this scenario performed significantly better than the implemented model. The combination of procedure data and demographic data achieved the closest results to a prediction with a complete data set.

CONCLUSION

An ongoing evaluation of real-time prediction is indispensable. Additional models adapted to the information available might improve prediction performance.

摘要

背景

在电子健康记录数据库中,患者之间可用信息的数量差异很大。在实时预测场景中,机器学习模型可能会收到一些患者的有限信息。

目的

我们的目的是评估缺失数据对谵妄实时预测的影响,并检测为缺失数据患者训练单独模型时预测性能的变化。

方法

我们将专门针对有缺失值的数据训练的模型与当前实施的谵妄预测模型进行比较。此外,我们模拟了五个具有不同缺失数据量的测试数据集,并在使用相同模型时将预测结果与完整数据集上的预测进行比较。

结果

对于缺失实验室和护理评估数据的患者,专门针对此场景训练的模型表现明显优于实施的模型。程序数据和人口统计学数据的组合取得了与完整数据集预测最接近的结果。

结论

对实时预测进行持续评估是必不可少的。适应可用信息的额外模型可能会提高预测性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验