Suppr超能文献

拟南芥 eIF4E 和 eIFiso4E 的磷酸化被 SnRK1 抑制翻译。

Phosphorylation of Arabidopsis eIF4E and eIFiso4E by SnRK1 inhibits translation.

机构信息

Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.

Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.

出版信息

FEBS J. 2019 Oct;286(19):3778-3796. doi: 10.1111/febs.14935. Epub 2019 Jun 3.

Abstract

Regulation of protein synthesis is critical for maintaining cellular homeostasis. In mammalian systems, translational regulatory networks have been elucidated in considerable detail. In plants, however, regulation occurs through different mechanisms that remain largely elusive. In this study, we present evidence that the Arabidopsis thaliana energy sensing kinase SnRK1, a homologue of mammalian AMP-activated kinase and yeast sucrose non-fermenting 1 (SNF1), inhibits translation by phosphorylating the cap binding proteins eIF4E and eIFiso4E. We establish that eIF4E and eIFiso4E contain two deeply conserved SnRK1 consensus target sites and that both interact with SnRK1 in vivo. We then demonstrate that SnRK1 phosphorylation inhibits the ability of Arabidopsis eIF4E and eIFiso4E to complement a yeast strain lacking endogenous eIF4E, and that inhibition correlates with repression of polysome formation. Finally, we show that SnRK1 over-expression in Nicotiana benthamiana plants reduces polysome formation, and that this effect can be counteracted by transient expression of eIF4E or mutant eIF4E containing non-phosphorylatable SnRK1 target residues, but not by a phosphomimic eIF4E. Together, these studies elucidate a novel and direct pathway for translational control in plant cells. In light of previous findings that SnRK1 conditions an innate antiviral defense and is inhibited by geminivirus pathogenicity factors, we speculate that phosphorylation of cap binding proteins may be a component of the resistance mechanism.

摘要

蛋白质合成的调控对于维持细胞内稳态至关重要。在哺乳动物系统中,翻译调节网络已经得到了相当详细的阐明。然而,在植物中,调节是通过仍然很大程度上难以捉摸的不同机制发生的。在这项研究中,我们提供了证据表明,拟南芥能量感应激酶 SnRK1,一种与哺乳动物 AMP 激活的激酶和酵母蔗糖非发酵 1 (SNF1) 的同源物,通过磷酸化帽结合蛋白 eIF4E 和 eIFiso4E 来抑制翻译。我们确定 eIF4E 和 eIFiso4E 含有两个深保守的 SnRK1 共识靶位点,并且这两个位点都与 SnRK1 在体内相互作用。然后,我们证明 SnRK1 磷酸化抑制了拟南芥 eIF4E 和 eIFiso4E 补充缺乏内源性 eIF4E 的酵母菌株的能力,并且抑制与多核糖体形成的抑制相关。最后,我们表明,在 Nicotiana benthamiana 植物中过度表达 SnRK1 会减少多核糖体的形成,而这种效应可以通过瞬时表达 eIF4E 或含有非磷酸化 SnRK1 靶位残基的突变体 eIF4E 来抵消,但不能通过磷酸化的 eIF4E 来抵消。总之,这些研究阐明了植物细胞中翻译控制的一种新的和直接的途径。鉴于先前的发现,SnRK1 条件了先天抗病毒防御,并被 geminivirus 致病性因子抑制,我们推测帽结合蛋白的磷酸化可能是抗性机制的一个组成部分。

相似文献

3
A new mechanism for translational control in plants.植物中转录控制的新机制。
FEBS J. 2019 Oct;286(19):3775-3777. doi: 10.1111/febs.15022. Epub 2019 Aug 9.

引用本文的文献

1
Translational reprogramming under heat stress: a plant's perspective.热胁迫下的转化重编程:植物视角
R Soc Open Sci. 2025 Jul 16;12(7):250132. doi: 10.1098/rsos.250132. eCollection 2025 Jul.
6
Plant translational reprogramming for stress resilience.植物应激恢复的翻译重编程
Front Plant Sci. 2023 Feb 24;14:1151587. doi: 10.3389/fpls.2023.1151587. eCollection 2023.
10
Dynamic Nutrient Signaling Networks in Plants.植物中的动态养分信号网络。
Annu Rev Cell Dev Biol. 2021 Oct 6;37:341-367. doi: 10.1146/annurev-cellbio-010521-015047. Epub 2021 Aug 5.

本文引用的文献

8
Shaping plant development through the SnRK1-TOR metabolic regulators.通过 SnRK1-TOR 代谢调节剂塑造植物发育。
Curr Opin Plant Biol. 2017 Feb;35:152-157. doi: 10.1016/j.pbi.2016.12.004. Epub 2016 Dec 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验