Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.
Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.
FEBS J. 2019 Oct;286(19):3778-3796. doi: 10.1111/febs.14935. Epub 2019 Jun 3.
Regulation of protein synthesis is critical for maintaining cellular homeostasis. In mammalian systems, translational regulatory networks have been elucidated in considerable detail. In plants, however, regulation occurs through different mechanisms that remain largely elusive. In this study, we present evidence that the Arabidopsis thaliana energy sensing kinase SnRK1, a homologue of mammalian AMP-activated kinase and yeast sucrose non-fermenting 1 (SNF1), inhibits translation by phosphorylating the cap binding proteins eIF4E and eIFiso4E. We establish that eIF4E and eIFiso4E contain two deeply conserved SnRK1 consensus target sites and that both interact with SnRK1 in vivo. We then demonstrate that SnRK1 phosphorylation inhibits the ability of Arabidopsis eIF4E and eIFiso4E to complement a yeast strain lacking endogenous eIF4E, and that inhibition correlates with repression of polysome formation. Finally, we show that SnRK1 over-expression in Nicotiana benthamiana plants reduces polysome formation, and that this effect can be counteracted by transient expression of eIF4E or mutant eIF4E containing non-phosphorylatable SnRK1 target residues, but not by a phosphomimic eIF4E. Together, these studies elucidate a novel and direct pathway for translational control in plant cells. In light of previous findings that SnRK1 conditions an innate antiviral defense and is inhibited by geminivirus pathogenicity factors, we speculate that phosphorylation of cap binding proteins may be a component of the resistance mechanism.
蛋白质合成的调控对于维持细胞内稳态至关重要。在哺乳动物系统中,翻译调节网络已经得到了相当详细的阐明。然而,在植物中,调节是通过仍然很大程度上难以捉摸的不同机制发生的。在这项研究中,我们提供了证据表明,拟南芥能量感应激酶 SnRK1,一种与哺乳动物 AMP 激活的激酶和酵母蔗糖非发酵 1 (SNF1) 的同源物,通过磷酸化帽结合蛋白 eIF4E 和 eIFiso4E 来抑制翻译。我们确定 eIF4E 和 eIFiso4E 含有两个深保守的 SnRK1 共识靶位点,并且这两个位点都与 SnRK1 在体内相互作用。然后,我们证明 SnRK1 磷酸化抑制了拟南芥 eIF4E 和 eIFiso4E 补充缺乏内源性 eIF4E 的酵母菌株的能力,并且抑制与多核糖体形成的抑制相关。最后,我们表明,在 Nicotiana benthamiana 植物中过度表达 SnRK1 会减少多核糖体的形成,而这种效应可以通过瞬时表达 eIF4E 或含有非磷酸化 SnRK1 靶位残基的突变体 eIF4E 来抵消,但不能通过磷酸化的 eIF4E 来抵消。总之,这些研究阐明了植物细胞中翻译控制的一种新的和直接的途径。鉴于先前的发现,SnRK1 条件了先天抗病毒防御,并被 geminivirus 致病性因子抑制,我们推测帽结合蛋白的磷酸化可能是抗性机制的一个组成部分。