Suppr超能文献

基于秩桥估计器的流感神经氨酸酶 a/PR/8/34(H1N1)抑制剂的稳健定量构效关系建模。

A robust quantitative structure-activity relationship modelling of influenza neuraminidase a/PR/8/34 (H1N1) inhibitors based on the rank-bridge estimator.

机构信息

a Department of Operations Research and Artificial Intelligence , University of Mosul , Mosul , Iraq.

b Department of Statistics and Informatics , University of Mosul , Mosul , Iraq.

出版信息

SAR QSAR Environ Res. 2019 Jun;30(6):417-428. doi: 10.1080/1062936X.2019.1613261. Epub 2019 May 24.

Abstract

Linear regression model is frequently encountered in quantitative structure-activity relationship (QSAR) modelling. The traditional estimation of regression model parameters is based on the normal assumption of the response variable (biological activity) and therefore, it is sensitive to outliers or heavy-tailed distributions. Robust penalized regression methods have been given considerable attention because they combine the robust estimation method with penalty terms to perform QSAR parameter estimation and variable selection (descriptor selection) simultaneously. In this paper, based on bridge penalty, a robust QSAR model of the influenza neuraminidase a/PR/8/34 (H1N1) inhibitors is proposed as a resistant method to the existence of outliers or heavy-tailed errors. The basic idea is to combine the rank regression and the bridge penalty together to produce the rank-bridge method. The rank-bridge model is internally and externally validated based on , , , , Y-randomization test, , and the applicability domain (AD). The validation results indicate that the rank-bridge model is robust and not due to chance correlation. In addition, the results indicate that the descriptor selection and prediction performance of the rank-bridge model for training dataset outperforms the other two used modelling methods. Rank-bridge model shows the highest , and , and the lowest . For the test dataset, rank-bridge model shows higher external validation value ( = 0.824), and lower value of compared with the other methods, indicating its higher predictive ability.

摘要

线性回归模型在定量构效关系(QSAR)建模中经常遇到。回归模型参数的传统估计是基于响应变量(生物活性)的正态假设,因此,它对异常值或重尾分布很敏感。稳健惩罚回归方法受到了相当多的关注,因为它们将稳健估计方法与惩罚项相结合,同时进行 QSAR 参数估计和变量选择(描述符选择)。在本文中,基于桥接惩罚,提出了一种针对流感神经氨酸酶 a/PR/8/34(H1N1)抑制剂的稳健 QSAR 模型,作为对异常值或重尾误差存在的抗性方法。基本思想是将秩回归和桥接惩罚结合在一起,产生秩桥方法。基于 、 、 、 、Y 随机化检验、 和适用域(AD)对秩桥模型进行内部和外部验证。验证结果表明,秩桥模型是稳健的,不是由于偶然相关性。此外,结果表明,秩桥模型对训练数据集的描述符选择和预测性能优于其他两种使用的建模方法。秩桥模型显示出最高的 、 和 ,以及最低的 。对于测试数据集,秩桥模型显示出更高的外部验证值( = 0.824)和低于其他方法的值 ,表明其具有更高的预测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验