Suppr超能文献

基于遗传算法的甲烷传感用金属-有机骨架阵列的智能选择。

Intelligent Selection of Metal-Organic Framework Arrays for Methane Sensing via Genetic Algorithms.

机构信息

Department of Chemical & Petroleum Engineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States.

出版信息

ACS Sens. 2019 Jun 28;4(6):1586-1593. doi: 10.1021/acssensors.9b00268. Epub 2019 Jun 7.

Abstract

Gas sensor arrays, also called electronic noses, use many chemically diverse materials to adsorb and subsequently identify gas species in complex mixture environments. Ideally these materials should have maximally complementary adsorption profiles to achieve the best sensing performance, but in practice they are selected by trial-and-error. Thus current electronic noses do not achieve optimal detection. In this work, we employ metal-organic frameworks (MOFs) as sensing materials and leverage a genetic algorithm to identify optimal combinations of them for detecting methane leaks in air. We build on our previously reported computational design methodology, which ranked MOF arrays by their Kullback-Liebler divergence (KLD) values for probabilistically describing the concentrations of each gas species in an unknown mixture. We ran the genetic algorithm to find optimal MOF arrays of various sizes when selecting from a library of 50 different MOF materials. The genetic algorithm was able to accurately predict the best arrays of any desired size when compared to brute-force screening. Thus, this search optimization can be integrated into the efficient design of MOF-based electronic noses.

摘要

气体传感器阵列,也称为电子鼻,使用许多化学性质不同的材料来吸附并随后识别复杂混合物环境中的气体种类。理想情况下,这些材料的吸附特性应该具有最大的互补性,以实现最佳的传感性能,但实际上它们是通过反复试验选择的。因此,目前的电子鼻无法实现最佳检测。在这项工作中,我们使用金属-有机骨架(MOFs)作为传感材料,并利用遗传算法来识别最佳组合,以检测空气中的甲烷泄漏。我们基于之前报道的计算设计方法,该方法通过 Kullback-Leibler 散度(KLD)值对 MOF 阵列进行排名,以概率描述未知混合物中每种气体的浓度。我们在 50 种不同的 MOF 材料库中进行选择,运行遗传算法来寻找不同大小的最佳 MOF 阵列。与暴力筛选相比,遗传算法能够准确预测任何所需大小的最佳阵列。因此,这种搜索优化可以集成到基于 MOF 的电子鼻的高效设计中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验