State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China.
Theranostics. 2019 Apr 13;9(9):2475-2488. doi: 10.7150/thno.31144. eCollection 2019.
Serum and plasma contain abundant biological information that reflect the body's physiological and pathological conditions and are therefore a valuable sample type for disease biomarkers. However, comprehensive profiling of the serological proteome is challenging due to the wide range of protein concentrations in serum. : To address this challenge, we developed a novel in-depth serum proteomics platform capable of analyzing the serum proteome across ~10 orders or magnitude by combining data obtained from Data Independent Acquisition Mass Spectrometry (DIA-MS) and customizable antibody microarrays. : Using psoriasis as a proof-of-concept disease model, we screened 50 serum proteomes from healthy controls and psoriasis patients before and after treatment with traditional Chinese medicine (YinXieLing) on our in-depth serum proteomics platform. We identified 106 differentially-expressed proteins in psoriasis patients involved in psoriasis-relevant biological processes, such as blood coagulation, inflammation, apoptosis and angiogenesis signaling pathways. In addition, unbiased clustering and principle component analysis revealed 58 proteins discriminating healthy volunteers from psoriasis patients and 12 proteins distinguishing responders from non-responders to YinXieLing. To further demonstrate the clinical utility of our platform, we performed correlation analyses between serum proteomes and psoriasis activity and found a positive association between the psoriasis area and severity index (PASI) score with three serum proteins (PI3, CCL22, IL-12B). : Taken together, these results demonstrate the clinical utility of our in-depth serum proteomics platform to identify specific diagnostic and predictive biomarkers of psoriasis and other immune-mediated diseases.
血清和血浆中含有丰富的生物信息,反映了机体的生理和病理状态,因此是疾病生物标志物的宝贵样本类型。然而,由于血清中蛋白质浓度范围很广,全面分析血清蛋白质组学具有挑战性。为了解决这一挑战,我们开发了一种新的深度血清蛋白质组学平台,该平台能够通过结合来自数据非依赖性采集质谱(DIA-MS)和定制化抗体微阵列的数据,分析跨越约 10 个数量级的血清蛋白质组。使用银屑病作为概念验证疾病模型,我们在深度血清蛋白质组学平台上筛选了 50 个健康对照者和接受中药(银屑灵)治疗前后的银屑病患者的血清蛋白质组。我们鉴定了 106 个在银屑病患者中差异表达的蛋白质,这些蛋白质涉及与银屑病相关的生物学过程,如血液凝固、炎症、细胞凋亡和血管生成信号通路。此外,无偏聚类和主成分分析显示,有 58 个蛋白可区分健康志愿者和银屑病患者,12 个蛋白可区分对银屑灵有反应者和无反应者。为了进一步证明我们平台的临床实用性,我们对血清蛋白质组与银屑病活动度进行了相关性分析,发现银屑病面积和严重程度指数(PASI)评分与三种血清蛋白(PI3、CCL22、IL-12B)呈正相关。综上所述,这些结果表明我们的深度血清蛋白质组学平台具有识别银屑病和其他免疫介导性疾病的特定诊断和预测生物标志物的临床应用价值。