Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
German Center for Neurodegenerative Diseases, Berlin, Germany.
Eur J Neurosci. 2019 Oct;50(7):3164-3180. doi: 10.1111/ejn.14477. Epub 2019 Jun 17.
Microstimulation mapping identified vocalization areas in primate anterior cingulate cortex. Rat anterior cingulate and medial prefrontal areas have also been intensely investigated, but we do not know, how these cortical areas contribute to vocalizations and no systematic mapping of stimulation-evoked vocalizations has been performed. To address this question, we mapped microstimulation-evoked (ultrasonic) vocalizations in rat cingulate and medial prefrontal cortex. The incidence of evoked vocalizations differed markedly between frontal cortical areas. Vocalizations were most often evoked in posterior prelimbic cortex and cingulate area 2, whereas vocalizations were rarely evoked in dorsal areas (vibrissa motor cortex, secondary motor cortex and cingulate area 1) and anterior areas (anterior prelimbic, medial-/ventral-orbital cortex). Vocalizations were observed at intermediate frequencies in ventro-medial areas (infralimbic and dorsopeduncular cortex). Various complete, naturally occurring calls could be elicited. In prelimbic cortex superficial layer microstimulation evoked mainly fear calls with low efficacy, whereas deep layer microstimulation evoked mainly 50 kHz calls with high efficacy. Vocalization stimulation thresholds were substantial (70-500 μA, the maximum tested; on average ~400 μA) and latencies were long (median 175 ms). Posterior prelimbic cortex projected to numerous targets and innervated brainstem vocalization centers such as the intermediate reticular formation and the nucleus retroambiguus disynaptically via the periaqueductal gray. Anatomical position, stimulation effects and projection targets of posterior prelimbic cortex were similar to that of monkey anterior cingulate vocalization cortex. Our data suggest that posterior prelimbic cortex is more closely involved in control of vocalization initiation than in specifying acoustic details of vocalizations.
微刺激映射鉴定了灵长类动物前扣带回皮质的发声区域。大鼠前扣带和内侧前额叶区域也受到了强烈的研究,但我们不知道这些皮质区域如何参与发声,也没有进行过刺激诱发发声的系统映射。为了解决这个问题,我们在大鼠扣带和内侧前额叶皮质中映射了微刺激诱发的(超声)发声。额皮质区域之间诱发发声的发生率差异显著。发声最常发生在后侧前扣带皮质和扣带皮质 2 区,而在背侧区域(触须运动皮质、次级运动皮质和扣带皮质 1)和前侧区域(前侧前扣带、内侧/腹侧眶皮质)很少诱发发声。发声在腹侧内侧区域(边缘下和背侧脚间皮质)以中频出现。可以观察到各种完整的、自然发生的叫声。在前扣带皮质浅层微刺激主要诱发低效能的恐惧叫声,而深层微刺激主要诱发高效能的 50 kHz 叫声。发声刺激阈值相当高(70-500 μA,测试最大值;平均约 400 μA),潜伏期较长(中位数 175 ms)。后前扣带皮质投射到许多目标,并通过中脑发声中心的中间网状结构和核 Retroambiguus 进行间接双突触投射。后前扣带皮质的解剖位置、刺激效应和投射目标与猴前扣带发声皮质相似。我们的数据表明,后前扣带皮质更密切地参与控制发声的起始,而不是发声的声学细节。