Lu Di, Crossley Sam, Xu Ruijuan, Hikita Yasuyuki, Hwang Harold Y
Department of Physics , Stanford University , Stanford , California 94305 , United States.
Department of Applied Physics , Stanford University , Stanford , California 94305 , United States.
Nano Lett. 2019 Jun 12;19(6):3999-4003. doi: 10.1021/acs.nanolett.9b01327. Epub 2019 May 31.
Crystalline oxide ferroelectric tunnel junctions enable persistent encoding of information in electric polarization, featuring nondestructive readout and scalability that can exceed current commercial high-speed, nonvolatile ferroelectric memories. However, the well-established fabrication of epitaxial devices on oxide substrates is difficult to adapt to silicon substrates for integration into complementary metal-oxide-semiconductor electronics. In this work, we report ferroelectric tunnel junctions based on 2.8 nm-thick BaTiO films grown epitaxially on SrTiO growth substrates, released, and relaminated onto silicon. The performance of the transferred devices is comparable to devices characterized on the oxide substrate, suggesting a viable route toward next-generation nonvolatile memories broadly integrable with different materials platforms.
晶体氧化物铁电隧道结能够在电极化中实现信息的持久编码,具有无损读出和可扩展性,可超越当前商用高速非易失性铁电存储器。然而,在氧化物衬底上成熟的外延器件制造工艺难以应用于硅衬底,以集成到互补金属氧化物半导体电子器件中。在这项工作中,我们报道了基于在SrTiO生长衬底上外延生长、释放并重新层压到硅上的2.8纳米厚BaTiO薄膜的铁电隧道结。转移器件的性能与在氧化物衬底上表征的器件相当,这表明了一条通向可与不同材料平台广泛集成的下一代非易失性存储器的可行途径。