Suppr超能文献

色素细胞遗传上不同群体中的命运可塑性和重编程。

Fate plasticity and reprogramming in genetically distinct populations of leucophores.

机构信息

Department of Biology, University of Virginia, Charlottesville, VA 22903.

Department of Biology, University of Washington, Seattle, WA 98195.

出版信息

Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):11806-11811. doi: 10.1073/pnas.1901021116. Epub 2019 May 28.

Abstract

Understanding genetic and cellular bases of adult form remains a fundamental goal at the intersection of developmental and evolutionary biology. The skin pigment cells of vertebrates, derived from embryonic neural crest, are a useful system for elucidating mechanisms of fate specification, pattern formation, and how particular phenotypes impact organismal behavior and ecology. In a survey of fishes, including the zebrafish , we identified two populations of white pigment cells-leucophores-one of which arises by transdifferentiation of adult melanophores and another of which develops from a yellow-orange xanthophore or xanthophore-like progenitor. Single-cell transcriptomic, mutational, chemical, and ultrastructural analyses of zebrafish leucophores revealed cell-type-specific chemical compositions, organelle configurations, and genetic requirements. At the organismal level, we identified distinct physiological responses of leucophores during environmental background matching, and we showed that leucophore complement influences behavior. Together, our studies reveal independently arisen pigment cell types and mechanisms of fate acquisition in zebrafish and illustrate how concerted analyses across hierarchical levels can provide insights into phenotypes and their evolution.

摘要

理解成体形式的遗传和细胞基础仍然是发育和进化生物学交叉领域的一个基本目标。脊椎动物的皮肤色素细胞来源于胚胎神经嵴,是阐明命运特化、模式形成以及特定表型如何影响生物体行为和生态学的机制的有用系统。在对鱼类(包括斑马鱼)的调查中,我们鉴定出两种白色色素细胞——白色素细胞——其中一种由成年黑色素细胞的转分化产生,另一种由黄色或橙色的黄色素细胞或黄色素细胞样祖细胞发育而来。对斑马鱼白色素细胞的单细胞转录组、突变、化学和超微结构分析揭示了细胞类型特异性的化学成分、细胞器构型和遗传要求。在个体水平上,我们在环境背景匹配过程中鉴定出了白色素细胞的不同生理反应,并且表明白色素细胞的补充会影响行为。总之,我们的研究揭示了斑马鱼中独立出现的色素细胞类型和命运获得的机制,并说明了跨层次综合分析如何为表型及其进化提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0302/6575160/f4f6831f28eb/pnas.1901021116fig01.jpg

相似文献

1
Fate plasticity and reprogramming in genetically distinct populations of leucophores.
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):11806-11811. doi: 10.1073/pnas.1901021116. Epub 2019 May 28.
2
Distinct interactions of Sox5 and Sox10 in fate specification of pigment cells in medaka and zebrafish.
PLoS Genet. 2018 Apr 5;14(4):e1007260. doi: 10.1371/journal.pgen.1007260. eCollection 2018 Apr.
4
Sox5 functions as a fate switch in medaka pigment cell development.
PLoS Genet. 2014 Apr 3;10(4):e1004246. doi: 10.1371/journal.pgen.1004246. eCollection 2014 Apr.
6
Leucophores are similar to xanthophores in their specification and differentiation processes in medaka.
Proc Natl Acad Sci U S A. 2014 May 20;111(20):7343-8. doi: 10.1073/pnas.1311254111. Epub 2014 May 6.
8
Zebrafish puma mutant decouples pigment pattern and somatic metamorphosis.
Dev Biol. 2003 Apr 15;256(2):242-57. doi: 10.1016/s0012-1606(03)00015-0.

引用本文的文献

1
pH variations enable guanine crystal formation within iridosomes.
Nat Chem Biol. 2025 Sep 2. doi: 10.1038/s41589-025-02020-0.
2
Specialized molecular pathways drive the formation of light-scattering assemblies in leucophores.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2424979122. doi: 10.1073/pnas.2424979122. Epub 2025 May 28.
3
Agouti and BMP signaling drive a naturally occurring fate conversion of melanophores to leucophores in zebrafish.
Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2424180122. doi: 10.1073/pnas.2424180122. Epub 2025 Feb 18.
7
Experimentally Manipulating the Thyroid Hormone Axis in Zebrafish.
Methods Mol Biol. 2025;2876:189-198. doi: 10.1007/978-1-0716-4252-8_13.
8
Visual input regulates melanophore differentiation.
Front Cell Dev Biol. 2024 Aug 20;12:1437613. doi: 10.3389/fcell.2024.1437613. eCollection 2024.
9
Genetic control over biogenic crystal morphogenesis in zebrafish.
Nat Chem Biol. 2025 Mar;21(3):383-392. doi: 10.1038/s41589-024-01722-1. Epub 2024 Aug 30.
10
Pax7 is involved in leucophore formation in goldfish and gene knockout improves the transparency of transparent goldfish.
Fish Physiol Biochem. 2024 Aug;50(4):1701-1710. doi: 10.1007/s10695-024-01364-z. Epub 2024 May 31.

本文引用的文献

1
Zebrafish Pigment Pattern Formation: Insights into the Development and Evolution of Adult Form.
Annu Rev Genet. 2019 Dec 3;53:505-530. doi: 10.1146/annurev-genet-112618-043741. Epub 2019 Sep 11.
2
Thyroid hormone regulates distinct paths to maturation in pigment cell lineages.
Elife. 2019 May 29;8:e45181. doi: 10.7554/eLife.45181.
3
Developmental and comparative transcriptomic identification of iridophore contribution to white barring in clownfish.
Pigment Cell Melanoma Res. 2019 May;32(3):391-402. doi: 10.1111/pcmr.12766. Epub 2019 Jan 29.
4
Dimensionality reduction for visualizing single-cell data using UMAP.
Nat Biotechnol. 2018 Dec 3. doi: 10.1038/nbt.4314.
5
Colours and colour vision in reef fishes: Past, present and future research directions.
J Fish Biol. 2019 Jul;95(1):5-38. doi: 10.1111/jfb.13849. Epub 2018 Dec 10.
6
A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest.
PLoS Genet. 2018 Oct 4;14(10):e1007402. doi: 10.1371/journal.pgen.1007402. eCollection 2018 Oct.
7
Evolution of Endothelin signaling and diversification of adult pigment pattern in Danio fishes.
PLoS Genet. 2018 Sep 18;14(9):e1007538. doi: 10.1371/journal.pgen.1007538. eCollection 2018 Sep.
8
Ontogenetic and phylogenetic simplification during white stripe evolution in clownfishes.
BMC Biol. 2018 Sep 5;16(1):90. doi: 10.1186/s12915-018-0559-7.
9
The Dual Functional Reflecting Iris of the Zebrafish.
Adv Sci (Weinh). 2018 Jun 6;5(8):1800338. doi: 10.1002/advs.201800338. eCollection 2018 Aug.
10
Single-cell mRNA quantification and differential analysis with Census.
Nat Methods. 2017 Mar;14(3):309-315. doi: 10.1038/nmeth.4150. Epub 2017 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验