Suppr超能文献

通过不同功能聚合物构建陶瓷电解质的Janus界面用于稳定的高压锂金属电池

Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries.

作者信息

Liang Jia-Yan, Zeng Xian-Xiang, Zhang Xu-Dong, Zuo Tong-Tong, Yan Min, Yin Ya-Xia, Shi Ji-Lei, Wu Xiong-Wei, Guo Yu-Guo, Wan Li-Jun

机构信息

CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , People's Republic of China.

University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China.

出版信息

J Am Chem Soc. 2019 Jun 12;141(23):9165-9169. doi: 10.1021/jacs.9b03517. Epub 2019 Jun 3.

Abstract

The fast-ionic-conducting ceramic electrolyte is promising for next-generation high-energy-density Li-metal batteries, yet its application suffers from the high interfacial resistance and poor interfacial stability. In this study, the compatible solid-state electrolyte was designed by coating LiAlTi(PO) (LATP) with polyacrylonitrile (PAN) and polyethylene oxide (PEO) oppositely to satisfy deliberately the disparate interface demands. Wherein, the upper PAN constructs soft-contact with LiNiMnCoO, and the lower PEO protects LATP from being reduced, guaranteeing high-voltage tolerance and improved stability toward Li-metal anode performed in one ceramic. Moreover, the core function of LATP is amplified to guide homogeneous ions distribution and hence suppresses the formation of a space-charge layer across interfaces, uncovered by the COMSOL Multiphysics concentration field simulation. Thus, such a bifunctional modified ceramic electrolyte integrates the respective superiority to render Li-metal batteries with excellent cycling stability (89% after 120 cycles), high Coulombic efficiency (exceeding 99.5% per cycle), and a dendrite-free Li anode at 60 °C, which represents an overall design of ceramic interface engineering for future practical solid battery systems.

摘要

快离子导电陶瓷电解质在下一代高能量密度锂金属电池中具有广阔前景,但其应用受到高界面电阻和较差界面稳定性的困扰。在本研究中,通过分别用聚丙烯腈(PAN)和聚环氧乙烷(PEO)对LiAlTi(PO)(LATP)进行包覆来设计兼容的固态电解质,以刻意满足不同的界面需求。其中,上层的PAN与LiNiMnCoO形成软接触,下层的PEO保护LATP不被还原,确保在一种陶瓷中实现高电压耐受性并提高对锂金属负极的稳定性。此外,LATP的核心功能得到增强,以引导离子均匀分布,从而抑制跨界面空间电荷层的形成,这一点由COMSOL Multiphysics浓度场模拟得到证实。因此,这种双功能改性陶瓷电解质整合了各自的优势,使锂金属电池在60℃下具有优异的循环稳定性(120次循环后为89%)、高库仑效率(每次循环超过99.5%)以及无枝晶锂负极,这代表了未来实用固态电池系统陶瓷界面工程的整体设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验