Department of Physical Education, Xi'an Polytechnic University, Xi'an, Shanxi, 710048, China.
Physical Education and Sports College, Beijing Normal University, Beijing, 100875, China.
Neurochem Int. 2019 Oct;129:104476. doi: 10.1016/j.neuint.2019.104476. Epub 2019 May 27.
Corticostriatal synaptic plasticity is considered to be a cellular basis for somatic motor regulation and motor skill learning. Changes in synaptic transmission efficiency underlie functional plasticity, while structural plasticity involves changes in the ultrastructure of the synapse and the levels of synaptic proteins. Exercise-induced fatigue may impair corticostriatal synaptic plasticity, and this impairment may be an important mechanism for exercise-induced fatigue. However, prior research focused mainly on functional plasticity such that the structural plasticity was not well understood. Because corticostriatal synapses are typical asymmetric synapses, here we have used transmission electron microscopy to examine the changes of asymmetry synaptic ultrastructure in rat striatum before and after repetitive exercise-induced fatigue; we have also used western blotting to detect the levels of synaptic active region protein Munc 13, RIM1 and synaptic vesicle protein Rab3A and postsynaptic density PSD-95 protein in rat striatum before and after exercise-induced fatigue. The results showed that the ultrastructure of asymmetry corticostriatal synapses and synaptic protein levels in the striatum of rats were abnormally changed after repetitive exercise-induced fatigue. These abnormal changes in synaptic ultrastructure and related protein levels may be the structural basis for the corticostriatal plasticity impairment after exercise-induced fatigue.
皮质纹状体突触可塑性被认为是躯体运动调节和运动技能学习的细胞基础。突触传递效率的变化是功能可塑性的基础,而结构可塑性则涉及突触超微结构和突触蛋白水平的变化。运动诱导的疲劳可能会损害皮质纹状体突触可塑性,这种损害可能是运动诱导的疲劳的一个重要机制。然而,之前的研究主要集中在功能可塑性上,因此对结构可塑性的了解还不够充分。由于皮质纹状体突触是典型的不对称突触,因此我们使用透射电子显微镜观察了重复性运动诱导疲劳前后大鼠纹状体不对称突触超微结构的变化;我们还使用 Western blot 检测了运动诱导疲劳前后大鼠纹状体突触活性区蛋白 Munc13、RIM1 和突触小泡蛋白 Rab3A 以及突触后密度 PSD-95 蛋白的水平。结果表明,重复性运动诱导疲劳后大鼠皮质纹状体不对称突触的超微结构和突触蛋白水平发生异常改变。这些突触超微结构和相关蛋白水平的异常变化可能是运动诱导疲劳后皮质纹状体可塑性损害的结构基础。