Suppr超能文献

具有依赖于群体大小的间接遗传效应的模型:评估稀释参数估计精度的模拟研究。

Models with indirect genetic effects depending on group sizes: a simulation study assessing the precision of the estimates of the dilution parameter.

机构信息

Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark.

Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands.

出版信息

Genet Sel Evol. 2019 May 30;51(1):24. doi: 10.1186/s12711-019-0466-6.

Abstract

BACKGROUND

In settings with social interactions, the phenotype of an individual is affected by the direct genetic effect (DGE) of the individual itself and by indirect genetic effects (IGE) of its group mates. In the presence of IGE, heritable variance and response to selection depend on size of the interaction group (group size), which can be modelled via a 'dilution' parameter (d) that measures the magnitude of IGE as a function of group size. However, little is known about the estimability of d and the precision of its estimate. Our aim was to investigate how precisely d can be estimated and what determines this precision.

METHODS

We simulated data with different group sizes and estimated d using a mixed model that included IGE and d. Schemes included various average group sizes (4, 6, and 8), variation in group size (coefficient of variation (CV) ranging from 0.125 to 1.010), and three values of d (0, 0.5, and 1). A design in which individuals were randomly allocated to groups was used for all schemes and a design with two families per group was used for some schemes. Parameters were estimated using restricted maximum likelihood (REML). Bias and precision of estimates were used to assess their statistical quality.

RESULTS

The dilution parameter of IGE can be estimated for simulated data with variation in group size. For all schemes, the length of confidence intervals ranged from 0.114 to 0.927 for d, from 0.149 to 0.198 for variance of DGE, from 0.011 to 0.086 for variance of IGE, and from 0.310 to 0.557 for genetic correlation between DGE and IGE. To estimate d, schemes with groups composed of two families performed slightly better than schemes with randomly composed groups.

CONCLUSIONS

Dilution of IGE was estimable, and in general its estimation was more precise when CV of group size was larger. All estimated parameters were unbiased. Estimation of dilution of IGE allows the contribution of direct and indirect variance components to heritable variance to be quantified in relation to group size and, thus, it could improve prediction of the expected response to selection in environments with group sizes that differ from the average size.

摘要

背景

在存在社会互动的环境中,个体的表型受到个体自身的直接遗传效应(DGE)和其群体成员的间接遗传效应(IGE)的影响。在存在 IGE 的情况下,可遗传方差和选择反应取决于相互作用群体的大小(群体大小),这可以通过“稀释”参数(d)进行建模,该参数衡量 IGE 的大小作为群体大小的函数。然而,人们对 d 的可估计性及其估计的准确性知之甚少。我们的目的是研究 d 可以被多么精确地估计,以及什么决定了这种精确性。

方法

我们使用包含 IGE 和 d 的混合模型模拟了不同群体大小的数据,并估计了 d。方案包括不同的平均群体大小(4、6 和 8)、群体大小的变化(变异系数(CV)范围从 0.125 到 1.010)和三个 d 值(0、0.5 和 1)。所有方案都使用个体随机分配到群体的设计,而一些方案则使用每个群体有两个家庭的设计。使用受限最大似然(REML)估计参数。使用偏差和估计的精度来评估其统计质量。

结果

可以对具有群体大小变化的模拟数据估计 IGE 的稀释参数。对于所有方案,d 的置信区间长度范围为 0.114 至 0.927,DGE 方差的置信区间长度范围为 0.149 至 0.198,IGE 方差的置信区间长度范围为 0.011 至 0.086,DGE 和 IGE 之间遗传相关性的置信区间长度范围为 0.310 至 0.557。为了估计 d,由两个家庭组成的群体的方案比由随机组成的群体的方案表现稍好。

结论

IGE 的稀释是可估计的,并且通常当群体大小的 CV 较大时,其估计更精确。所有估计的参数都是无偏的。IGE 稀释的估计允许量化直接和间接方差分量对遗传方差的贡献与群体大小的关系,从而可以提高对与平均群体大小不同的群体大小环境中选择反应的预期预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c50/6543592/e2e2b59efa1f/12711_2019_466_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验