School of Medicine, Trinity College University of Dublin, Dublin, Ireland.
National Centre for Advanced Medical Imaging (CAMI), St James's Hospital, Dublin, Ireland.
Med Phys. 2019 Aug;46(8):3592-3602. doi: 10.1002/mp.13635. Epub 2019 Jun 30.
To quantify the effects of DCE acquisition and pharmacokinetic modeling processing methodologies on the absolute accuracy and precision of derived pharmacokinetic (PK) parameter values using a novel anthropomorphic phantom test device in which "ground truth" values were known a priori.
Ground truth arterial input function (AIF), tumor, and healthy tissue contrast agent concentration-time curves (CTCs) were established within the phantom and repeatedly measured on a 3T MRI scanner with varying temporal resolution (T = 1.22-30.6 s). Ground truth CTCs, K , v , and k values were directly compared to measured values as a function of T , with and without the application of voxel-wise flip-angle corrections applied to the data and PK modeling performed using linear and nonlinear forms of the standard Tofts model.
Measurement of the AIF was strongly affected by the T used (AIF curve-shape feature errors: 3%-222% for T : 1.22-30.6 s), which directly translated to errors in the derived K , v , and k values of 1%-24%, 2%-5%, and 1%-26% respectively across this T range (flip-angle correction applied). Further appreciable improvements in accuracy and precision arising from the use of flip angle corrections and nonlinear least squares fitting were quantified and used to identify optimal acquisition and analysis methodologies for which measurement errors could be constrained below threshold levels.
This quantitative study provides insight into how errors in AIF measurement propagate to errors in PK parameter outputs. Absolute quantification of the accuracy and precision of MR-measured CTCs, and resultant PK parameter values, allowed for an optimal temporal resolution to be defined commensurate with maintaining K , v , and k measurement errors below 5% and 10% levels. An appreciable gain in PK parameter estimation accuracy at the analysis stage was also demonstrated using flip-angle corrections and a linear approach to PK model fitting.
使用新型拟人化体模测试设备,量化 DCE 采集和药代动力学建模处理方法对衍生药代动力学(PK)参数值的绝对准确性和精密度的影响,该设备可预先知晓“真实值”。
在体模内建立真实的动脉输入函数(AIF)、肿瘤和健康组织对比剂浓度-时间曲线(CTC),并在 3T MRI 扫描仪上以不同的时间分辨率(T=1.22-30.6s)进行重复测量。直接比较真实值 CTC、K、v 和 k 值与 T 的函数关系,包括是否应用体素翻转角校正以及使用标准 Tofts 模型的线性和非线性形式进行 PK 建模。
AIF 的测量强烈受到 T 的影响(T 为 1.22-30.6s 时 AIF 曲线形状特征误差为 3%-222%),这直接导致衍生 K、v 和 k 值的误差分别为 1%-24%、2%-5%和 1%-26%(应用翻转角校正)。通过应用翻转角校正和非线性最小二乘拟合,进一步提高了准确性和精密度,确定了最佳的采集和分析方法,使测量误差可限制在阈值以下。
这项定量研究深入了解了 AIF 测量误差如何传播到 PK 参数输出误差。通过对 MR 测量 CTC 及其衍生 PK 参数值的准确性和精密度进行绝对定量,可以确定与保持 K、v 和 k 测量误差低于 5%和 10%水平相一致的最佳时间分辨率。在分析阶段还通过应用翻转角校正和线性 PK 模型拟合方法,证明了 PK 参数估计准确性有明显提高。