Suppr超能文献

医学影像中多器官分析的计算解剖学:综述。

Computational anatomy for multi-organ analysis in medical imaging: A review.

机构信息

Biomedical Image Analysis Group, Imperial College London, United Kingdom.

BCN Medtech, Dept. of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Galgo Medical S.L., Spain.

出版信息

Med Image Anal. 2019 Aug;56:44-67. doi: 10.1016/j.media.2019.04.002. Epub 2019 May 15.

Abstract

The medical image analysis field has traditionally been focused on the development of organ-, and disease-specific methods. Recently, the interest in the development of more comprehensive computational anatomical models has grown, leading to the creation of multi-organ models. Multi-organ approaches, unlike traditional organ-specific strategies, incorporate inter-organ relations into the model, thus leading to a more accurate representation of the complex human anatomy. Inter-organ relations are not only spatial, but also functional and physiological. Over the years, the strategies proposed to efficiently model multi-organ structures have evolved from the simple global modeling, to more sophisticated approaches such as sequential, hierarchical, or machine learning-based models. In this paper, we present a review of the state of the art on multi-organ analysis and associated computation anatomy methodology. The manuscript follows a methodology-based classification of the different techniques available for the analysis of multi-organs and multi-anatomical structures, from techniques using point distribution models to the most recent deep learning-based approaches. With more than 300 papers included in this review, we reflect on the trends and challenges of the field of computational anatomy, the particularities of each anatomical region, and the potential of multi-organ analysis to increase the impact of medical imaging applications on the future of healthcare.

摘要

医学图像分析领域传统上一直专注于开发针对特定器官和疾病的方法。最近,人们对开发更全面的计算解剖模型的兴趣日益浓厚,从而产生了多器官模型。与传统的特定器官策略不同,多器官方法将器官间关系纳入模型中,从而更准确地表示复杂的人体解剖结构。器官间关系不仅是空间的,而且是功能和生理的。多年来,用于有效建模多器官结构的策略已经从简单的全局建模发展到更复杂的方法,如顺序、分层或基于机器学习的模型。本文对多器官分析和相关计算解剖方法的最新进展进行了综述。本文采用基于方法的分类,对用于分析多器官和多解剖结构的不同技术进行了分类,从使用点分布模型的技术到最新的基于深度学习的方法。本综述中包含了 300 多篇论文,我们反思了计算解剖领域的趋势和挑战、每个解剖区域的特殊性以及多器官分析在提高医学成像应用对未来医疗保健的影响方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验