Department of Biochemistry and Biophysics.
Department of Otolaryngology/Head and Neck Surgery.
J Neurosci. 2019 Aug 7;39(32):6233-6250. doi: 10.1523/JNEUROSCI.2984-18.2019. Epub 2019 Jun 10.
Dendritic spines in the developing mammalian neocortex are initially overproduced and then eliminated during adolescence to achieve appropriate levels of excitation in mature networks. We show here that the L1 family cell adhesion molecule Close Homolog of L1 (CHL1) and secreted repellent ligand Semaphorin 3B (Sema3B) function together to induce dendritic spine pruning in developing cortical pyramidal neurons. Loss of CHL1 in null mutant mice in both genders resulted in increased spine density and a greater proportion of immature spines on apical dendrites in the prefrontal and visual cortex. Electron microscopy showed that excitatory spine synapses with postsynaptic densities were increased in the CHL1-null cortex, and electrophysiological recording in prefrontal slices from mutant mice revealed deficiencies in excitatory synaptic transmission. Mechanistically, Sema3B protein induced elimination of spines on apical dendrites of cortical neurons cultured from wild-type but not CHL1-null embryos. Sema3B was secreted by the cortical neuron cultures, and its levels increased when cells were treated with the GABA antagonist gabazine. CHL1 was coexpressed with Sema3B in pyramidal neuron subpopulations and formed a complex with Sema3B receptor subunits Neuropilin-2 and PlexinA4. CHL1 and NrCAM, a closely related L1 adhesion molecule, localized primarily to distinct spines and promoted spine elimination to Sema3B or Sema3F, respectively. These results support a new concept in which selective spine elimination is achieved through different secreted semaphorins and L1 family adhesion molecules to sculpt functional neural circuits during postnatal maturation. Dendritic spines in the mammalian neocortex are initially overproduced and then pruned in adolescent life through unclear mechanisms to sculpt maturing cortical circuits. Here, we show that spine and excitatory synapse density of pyramidal neurons in the developing neocortex is regulated by the L1 adhesion molecule, Close Homolog of L1 (CHL1). CHL1 mediated spine pruning in response to the secreted repellent ligand Semaphorin 3B and associated with receptor subunits Neuropilin-2 and PlexinA4. CHL1 and related L1 adhesion molecule NrCAM localized to distinct spines, and promoted spine elimination to Semaphorin 3B and -3F, respectively. These results support a new concept in which selective elimination of individual spines and nascent synapses can be achieved through the action of distinct secreted semaphorins and L1 adhesion molecules.
在哺乳动物新皮层的发育过程中,树突棘最初是过度产生的,然后在青春期被消除,以达到成熟网络中适当的兴奋水平。我们在这里表明,L1 家族细胞粘附分子紧密同源物 L1(CHL1)和分泌的排斥配体 Semaphorin 3B(Sema3B)共同作用诱导发育中的皮质锥体神经元的树突棘修剪。在两性的缺失突变小鼠中,CHL1 的缺失导致前额叶和视觉皮层的树突棘密度增加,以及更多的不成熟棘突出现在顶树突上。电子显微镜显示,在 CHL1 缺失的皮层中,兴奋性棘突突触后密度增加,并且来自突变小鼠的前额叶切片的电生理记录显示兴奋性突触传递存在缺陷。在机制上,Sema3B 蛋白诱导培养自野生型但不是 CHL1 缺失型胚胎的皮质神经元顶树突棘的消除。Sema3B 由皮质神经元培养物分泌,当用 GABA 拮抗剂 gabazine 处理细胞时,其水平增加。CHL1 与 Sema3B 一起在锥体神经元亚群中表达,并与 Sema3B 受体亚基 Neuropilin-2 和 PlexinA4 形成复合物。CHL1 和与其密切相关的 L1 粘附分子 NrCAM 主要定位于不同的棘突上,并分别促进 Sema3B 或 Sema3F 诱导的棘突消除。这些结果支持了一个新概念,即通过不同的分泌 semaphorin 和 L1 家族粘附分子选择性地消除棘突,以在出生后成熟过程中塑造功能性神经回路。哺乳动物新皮层中的树突棘最初是过度产生的,然后通过不明确的机制在青春期被修剪,以塑造成熟的皮质回路。在这里,我们表明,发育中的新皮层中锥体神经元的棘突和兴奋性突触密度受 L1 粘附分子紧密同源物 L1(CHL1)的调节。CHL1 介导对分泌的排斥配体 Semaphorin 3B 的反应,并与受体亚基 Neuropilin-2 和 PlexinA4 相关。CHL1 和相关的 L1 粘附分子 NrCAM 定位于不同的棘突上,并分别促进 Sema3B 和 -3F 诱导的棘突消除。这些结果支持了一个新概念,即通过不同的分泌 semaphorin 和 L1 家族粘附分子的作用,可以选择性地消除单个棘突和新生突触。