Suppr超能文献

基于 GoogLeNet 深度神经网络架构的心电图节律评估。

Assessment of Electrocardiogram Rhythms by GoogLeNet Deep Neural Network Architecture.

机构信息

Biomedical Engineering, School of ICT Convergence Engineering, College of Science & Technology, Konkuk University, 268 Chungwon-daero, Chungju 27478, Republic of Korea.

Division of Electronic Engineering, Chonbuk National University, 567 Baekje-daero, Jeonju 54896, Republic of Korea.

出版信息

J Healthc Eng. 2019 Apr 28;2019:2826901. doi: 10.1155/2019/2826901. eCollection 2019.

Abstract

The aim of this study is to design GoogLeNet deep neural network architecture by expanding the kernel size of the inception layer and combining the convolution layers to classify the electrocardiogram (ECG) beats into a normal sinus rhythm, premature ventricular contraction, atrial premature contraction, and right/left bundle branch block arrhythmia. Based on testing MIT-BIH arrhythmia benchmark databases, the scope of training/test ECG data was configured by covering at least three and seven -peak features, and the proposed extended-GoogLeNet architecture can classify five distinct heartbeats; normal sinus rhythm (NSR), premature ventricular contraction (PVC), atrial premature contraction (APC), right bundle branch block (RBBB), and left bundle brunch block(LBBB), with an accuracy of 95.94%, an error rate of 4.06%, a maximum sensitivity of 96.9%, and a maximum positive predictive value of 95.7% for judging a normal or an abnormal beat with considering three ECG segments; an accuracy of 98.31%, a sensitivity of 88.75%, a specificity of 99.4%, and a positive predictive value of 94.4% for classifying APC from NSR, PVC, APC beats, whereas the error rate for misclassifying APC beat was relative low at 6.32%, compared with previous research efforts.

摘要

本研究旨在通过扩展 inception 层的核大小并结合卷积层,设计 GoogLeNet 深度神经网络架构,将心电图(ECG)的节拍分类为正常窦性节律、室性早搏、房性早搏和右/左束支传导阻滞心律失常。基于测试 MIT-BIH 心律失常基准数据库,通过覆盖至少三个和七个峰值特征来配置训练/测试 ECG 数据的范围,所提出的扩展 GoogLeNet 架构可以对五种不同的心跳进行分类:正常窦性节律(NSR)、室性早搏(PVC)、房性早搏(APC)、右束支传导阻滞(RBBB)和左束支传导阻滞(LBBB),准确率为 95.94%,错误率为 4.06%,最大灵敏度为 96.9%,最大阳性预测值为 95.7%,用于判断考虑三个 ECG 段的正常或异常节拍;准确率为 98.31%,灵敏度为 88.75%,特异性为 99.4%,阳性预测值为 94.4%,用于从 NSR、PVC、APC 节拍中分类 APC,而 APC 节拍的错误分类率相对较低,为 6.32%,与之前的研究工作相比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9acd/6512052/7db42d226d2d/JHE2019-2826901.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验