Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden.
Molecular Biophysics and Integrated Bio-Imaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, 94720, Berkeley, CA, USA.
Nat Commun. 2019 Jun 13;10(1):2589. doi: 10.1038/s41467-019-10448-x.
X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2 nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4 nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature.
无射线自由电子激光(XFEL)为生物物体的结构研究创造了新的可能性,其延伸范围超出了同步加速器辐射的可能性。连续飞秒晶体学使得从微毫米大小的晶体中确定高分辨率结构成为可能,而单颗粒相干 X 射线成像是需要进一步发展才能将分辨率扩展到几十纳米以上。在这里,我们描述了一种中间方法:具有螺旋对称性的生物组装体的 XFEL 成像。我们使用液体微喷射器从穿过 XFEL 光束注入的微管样品中收集 X 射线散射图像,将这些图像分类为平均图像,将这些数据合并成一个衍射图案,扩展到 2nm 分辨率,并将这些数据重构为微管的投影图像。在这个重建中,可以看到细节,如 4nm 的微管蛋白单体。这些结果说明了在室温下对具有螺旋对称性的生物组装体进行单分子 X 射线成像的潜力。