Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America.
Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia, United States of America.
PLoS Negl Trop Dis. 2019 Jun 14;13(6):e0007395. doi: 10.1371/journal.pntd.0007395. eCollection 2019 Jun.
As emerging and re-emerging infectious arboviruses like dengue, chikungunya, and Zika threaten new populations worldwide, officials scramble to assess local severity and transmissibility, with little to no epidemiological history to draw upon. Indirect estimates of risk from vector habitat suitability maps are prone to great uncertainty, while direct estimates from epidemiological data are only possible after cases accumulate and, given environmental constraints on arbovirus transmission, cannot be widely generalized beyond the focal region. Combining these complementary methods, we use disease importation and transmission data to improve the accuracy and precision of a priori ecological risk estimates. We demonstrate this approach by estimating the spatiotemporal risks of Zika virus transmission throughout Texas, a high-risk region in the southern United States. Our estimates are, on average, 80% lower than published ecological estimates-with only six of 254 Texas counties deemed capable of sustaining a Zika epidemic-and they are consistent with the number of autochthonous cases detected in 2017. Importantly our method provides a framework for model comparison, as our mechanistic understanding of arbovirus transmission continues to improve. Real-time updating of prior risk estimates as importations and outbreaks arise can thereby provide critical, early insight into local transmission risks as emerging arboviruses expand their global reach.
随着登革热、基孔肯雅热和寨卡等新发和再现传染病虫媒病毒在全球范围内威胁到新的人群,官员们争先恐后地评估当地的严重程度和传染性,但几乎没有可供借鉴的流行病学历史。利用媒介栖息地适宜性地图进行风险的间接估计容易产生很大的不确定性,而只有在病例积累后,才能从流行病学数据中直接估计风险,并且由于虫媒病毒传播受到环境限制,不能在疫区以外广泛推广。通过结合这些互补的方法,我们利用疾病输入和传播数据来提高先验生态风险估计的准确性和精度。我们通过估计寨卡病毒在美国南部高风险地区德克萨斯州的时空传播风险来证明这种方法。我们的估计值平均比已发表的生态估计值低 80%,在 254 个德克萨斯州的县中,只有 6 个县被认为有能力维持寨卡病毒的流行,并且与 2017 年检测到的本地病例数量一致。重要的是,我们的方法为模型比较提供了一个框架,因为我们对虫媒病毒传播的机制理解在不断提高。随着新发虫媒病毒的全球传播范围不断扩大,实时更新输入和暴发引发的先验风险估计,可以为当地传播风险提供关键的早期洞察。