Suppr超能文献

基于脑电信号的 P300 拼写器系统中的基于对和方差的信号压缩算法 (PVBSC)。

Pairwise and variance based signal compression algorithm (PVBSC) in the P300 based speller systems using EEG signals.

机构信息

Graduate School of Natural Sciences, Department of Electrical and Electronics Engineering Bolu Abant Izzet Baysal University, 14280, Bolu, Turkey.

Department of Electrical and Electronics Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, 14280, Bolu, Turkey.

出版信息

Comput Methods Programs Biomed. 2019 Jul;176:149-157. doi: 10.1016/j.cmpb.2019.05.011. Epub 2019 May 13.

Abstract

BACKGROUND AND OBJECTIVE

Brain-Computer Interfaces (BCI) are used to provide environmental interaction among individuals, especially people with disabilities. Spelling systems, one of the BCI applications, are based on the principle of detecting P300 waves from EEG signals. The aim of speller systems is to identify the P300 waves and determine the letter on a screen opposite the person. The purpose of the operating speller systems is to minimize the processing cost of the system with smaller data sizes to be obtained by compressing EEG data before the pre-processing step. In this study, a hybrid model was presented. With Pairwise and variance-based signal compression Algorithm, first of all, data is compressed and then preprocessing, and classification is performed. The proposed hybrid model is intended to be stored in offline systems and to increase the speed of operation in online systems.

METHODS

In this paper, we proposed a new hybrid model with the compression algorithm called Pairwise and Variance Based Signal Compression Algorithm (PVBSC) for P300-based speller systems. The proposed method wasevaluated on Wadsworth BCI speller dataset. As the focus is the compression algorithm, the channel selection has been applied to increase the working speed. Channel selection was made by detecting eight channels most commonly used in the literature.

RESULTS

As the first step in the compression algorithm was segmentation, the study was repeated with 16, 32 and 64 channel lengths to see the effect of the window length. Then, to find the target character from EEG signals, we have used two different classifiers including an ensemble of LS-SVMs and ensemble of LDAs. In this study, as the best classification accuracy, 1.437 compression ratio and 94.166% accuracy rate by Ensemble of LDAs was achieved with PVBSC with 32 window lengths.

CONCLUSIONS

The obtained results have shown that the proposed compression method could be confidently used in the compressing the P300 wave-containing EEG signals and reduce the data size significantly.

摘要

背景与目的

脑-机接口(BCI)用于为个体提供环境交互,特别是为残疾人提供环境交互。拼写系统是 BCI 的应用之一,它基于检测 EEG 信号中的 P300 波的原理。拼写系统的目的是识别 P300 波,并确定与个人相对应的屏幕上的字母。操作拼写系统的目的是通过在预处理步骤之前压缩 EEG 数据来最小化系统的处理成本,并使用较小的数据大小。在这项研究中,提出了一种混合模型。首先使用基于成对和方差的信号压缩算法对数据进行压缩,然后进行预处理和分类。提出的混合模型旨在存储在离线系统中,并提高在线系统的操作速度。

方法

在本文中,我们提出了一种新的混合模型,该模型使用了一种称为基于成对和方差的信号压缩算法(PVBSC)的压缩算法,用于基于 P300 的拼写系统。该方法在 Wadsworth BCI 拼写数据集上进行了评估。由于重点是压缩算法,因此已经应用了通道选择来提高工作速度。通过检测文献中最常用的八个通道来进行通道选择。

结果

作为压缩算法的第一步是分段,因此,研究了 16、32 和 64 个通道长度的重复实验,以观察窗口长度的影响。然后,为了从 EEG 信号中找到目标字符,我们使用了两种不同的分类器,包括 LS-SVM 集成和 LDA 集成。在这项研究中,使用 32 个窗口长度的 PVBSC 与 LDA 集成达到了最佳分类准确率 1.437 的压缩比和 94.166%的准确率。

结论

所得结果表明,所提出的压缩方法可以在压缩包含 P300 波的 EEG 信号方面得到充分信任,并显著减小数据量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验