Shandong Provincial Key Laboratory of Network based Intelligent Computing, School of Information Science and Engineering, University of Jinan, Jinan 250022, China.
Shandong Provincial Key Laboratory of Network based Intelligent Computing, School of Information Science and Engineering, University of Jinan, Jinan 250022, China.
Comput Methods Programs Biomed. 2019 Jul;176:69-80. doi: 10.1016/j.cmpb.2019.04.027. Epub 2019 Apr 24.
Quantitative assessment of subretinal fluid in spectral domain optical coherence tomography (SD-OCT) images is crucial for the diagnosis of central serous chorioretinopathy. For the subretinal fluid segmentation, the traditional methods need to segment retinal layers and then segment subretinal fluid. The layer segmentation has a high influence on subretinal fluid segmentation, so we aim to develop a deep learning model to segment subretinal fluid automatically without layer segmentation.
In this paper, we propose a novel image-to-image double-branched and area-constraint fully convolutional networks (DA-FCN) for segmenting subretinal fluid in SD-OCT images. Firstly, the dataset is extended by mirroring image, which helps to overcome the over-fitting problem in the training stage. Then, double-branched structures are designed to learn the shallow coarse and deep representations from the SD-OCT images. DA-FCN model is directly trained using the image and corresponding pixel-based ground truth. Finally, we introduce a novel supervision mechanism by jointing the area loss L with the softmax loss L to learn more representative features.
The testing dataset with 52 SD-OCT volumes from 35 eyes of 35 patients is used for the evaluation of the proposed algorithm based on the cross-validation method. For the three criterions, including the true positive volume fraction, dice similarity coefficient, and positive predicative value, our method can obtain the results of (1) 94.3, 95.3, and 96.4 for dataset 1; (2) 97.3, 95.3, and 93.4 for dataset 2; (3) 93.0, 92.8, and 92.8 for dataset 3; (4) 89.7, 90.1, and 92.6 for dataset 4.
In this work, we propose a novel fully convolutional network for the automatic segmentation of the subretinal fluid. By constructing the double branched structures and area constraint term, our method shows higher segmentation accuracy without layer segmentation compared with other methods.
在频域光相干断层扫描(SD-OCT)图像中对视网膜下液进行定量评估对于中心性浆液性脉络膜视网膜病变的诊断至关重要。对于视网膜下液分割,传统方法需要分割视网膜层,然后分割视网膜下液。层分割对视网膜下液分割有很大的影响,因此我们旨在开发一种无需层分割即可自动分割视网膜下液的深度学习模型。
在本文中,我们提出了一种新颖的图像到图像双分支和区域约束全卷积网络(DA-FCN),用于分割 SD-OCT 图像中的视网膜下液。首先,通过镜像图像扩展数据集,有助于克服训练阶段的过拟合问题。然后,设计了双分支结构来从 SD-OCT 图像中学习浅层粗和深层表示。DA-FCN 模型直接使用图像和相应的基于像素的地面真值进行训练。最后,通过结合区域损失 L 和 softmax 损失 L 引入新的监督机制,以学习更具代表性的特征。
基于交叉验证方法,使用 35 名患者的 52 个 SD-OCT 容积的测试数据集评估所提出的算法。对于三个标准,包括真阳性体积分数、骰子相似系数和阳性预测值,我们的方法可以获得(1)数据集 1 的结果为 94.3、95.3 和 96.4;(2)数据集 2 的结果为 97.3、95.3 和 93.4;(3)数据集 3 的结果为 93.0、92.8 和 92.8;(4)数据集 4 的结果为 89.7、90.1 和 92.6。
在这项工作中,我们提出了一种用于自动分割视网膜下液的新型全卷积网络。通过构建双分支结构和区域约束项,与其他方法相比,我们的方法在无需层分割的情况下表现出更高的分割精度。