Suppr超能文献

利用不规则纵向数据分析进行慢性病的早期检测和风险评估。

Early detection and risk assessment for chronic disease with irregular longitudinal data analysis.

机构信息

Department of Electrical & Computer Engineering, Texas A&M University, United States.

Department of Industrial & Systems Engineering, University of Washington, United States.

出版信息

J Biomed Inform. 2019 Aug;96:103231. doi: 10.1016/j.jbi.2019.103231. Epub 2019 Jun 13.

Abstract

Early detection and risk assessment of complex chronic disease based on longitudinal clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. Disease diagnosis with computer-aided methods has been extensively studied. However, early detection and contemporaneous risk assessment based on partially labeled irregular longitudinal measurements is relatively unexplored. In this paper, we propose a flexible mixed-kernel framework for training a contemporaneous disease risk detector to predict the onset of disease and monitor the disease progression. Moreover, we address the label insufficiency problem by identifying the pattern of disease-induced progression over time with longitudinal data. Our method is based on a Structured Output Support Vector Machine (SOSVM), extended to longitudinal data analysis. Extensive experiments are conducted on several datasets of varying complexity, including the contemporaneous risk assessment with simulated irregular longitudinal data; the identification of the onset of Type 1 Diabetes (T1D) with irregularly sampled longitudinal RNA-Seq gene expression dataset; as well as the monitoring of the drug long-term effects on patients using longitudinal RNA-Seq dataset containing missing time points, demonstrating that our method enhances the accuracy in both early diagnosis and risk estimation with partially labeled irregular longitudinal clinical data.

摘要

基于纵向临床数据的复杂慢性疾病的早期检测和风险评估有助于医生进行早期诊断和监测疾病进展。利用计算机辅助方法进行疾病诊断已经得到了广泛的研究。然而,基于部分标记的不规则纵向测量的早期检测和同期风险评估还相对较少被探索。在本文中,我们提出了一种灵活的混合核框架,用于训练同期疾病风险探测器,以预测疾病的发生并监测疾病的进展。此外,我们通过使用纵向数据识别疾病诱导的进展模式来解决标签不足的问题。我们的方法基于结构输出支持向量机(SOSVM),并扩展到了纵向数据分析中。我们在几个不同复杂程度的数据集上进行了广泛的实验,包括使用模拟不规则纵向数据进行同期风险评估、使用不规则采样的纵向 RNA-Seq 基因表达数据集识别 1 型糖尿病(T1D)的发生,以及使用包含缺失时间点的纵向 RNA-Seq 数据集监测药物对患者的长期影响,证明我们的方法可以提高部分标记不规则纵向临床数据中早期诊断和风险估计的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验