Suppr超能文献

气相-液相-固相生长的砷化镓纳米线的硅掺杂:n型还是p型?

Si Doping of Vapor-Liquid-Solid GaAs Nanowires: n-Type or p-Type?

作者信息

Hijazi Hadi, Monier Guillaume, Gil Evelyne, Trassoudaine Agnès, Bougerol Catherine, Leroux Christine, Castellucci Dominique, Robert-Goumet Christine, Hoggan Philip E, André Yamina, Isik Goktas Nebile, LaPierre Ray R, Dubrovskii Vladimir G

机构信息

Université Clermont Auvergne, CNRS, SIGMA Clermont , Institut Pascal , F-63000 Clermont-Ferrand , France.

Université Grenoble Alpes, CNRS , Institut Néel , 38000 Grenoble France.

出版信息

Nano Lett. 2019 Jul 10;19(7):4498-4504. doi: 10.1021/acs.nanolett.9b01308. Epub 2019 Jun 20.

Abstract

The incorporation of Si into vapor-liquid-solid GaAs nanowires often leads to p-type doping, whereas it is routinely used as an n-dopant of planar layers. This property limits the applications of GaAs nanowires in electronic and optoelectronic devices. The strong amphoteric behavior of Si in nanowires is not yet fully understood. Here, we present the first attempt to quantify this behavior as a function of the droplet composition and temperature. It is shown that the doping type critically depends on the As/Ga ratio in the droplet. In sharp contrast to vapor-solid growth, the droplet contains very few As atoms, which enhance their reverse transfer from solid to liquid. As a result, Si atoms preferentially replace As in GaAs, leading to p-type doping in nanowires. Hydride vapor phase epitaxy provides the highest As concentrations in the catalyst droplets during their vapor-liquid-solid growth, resulting in n-type dopant behavior of Si. We present experimental data on n-doped Si-doped GaAs nanowires grown by this method and explain the doping within our model. These results give a clear route for obtaining n-type or p-type Si doping in GaAs nanowires and may be extended to other III-V nanowires.

摘要

将硅掺入气-液-固生长的砷化镓纳米线中通常会导致p型掺杂,而在平面层中它通常用作n型掺杂剂。这一特性限制了砷化镓纳米线在电子和光电器件中的应用。硅在纳米线中的强两性行为尚未得到充分理解。在此,我们首次尝试将这种行为量化为液滴成分和温度的函数。结果表明,掺杂类型主要取决于液滴中的砷/镓比率。与气-固生长形成鲜明对比的是,液滴中含有的砷原子很少,这增强了它们从固体到液体的反向转移。因此,硅原子优先取代砷化镓中的砷,导致纳米线中的p型掺杂。氢化物气相外延在其气-液-固生长过程中能在催化剂液滴中提供最高的砷浓度,从而导致硅表现出n型掺杂行为。我们展示了通过这种方法生长的n型硅掺杂砷化镓纳米线的实验数据,并在我们的模型中解释了掺杂情况。这些结果为在砷化镓纳米线中获得n型或p型硅掺杂提供了一条清晰的途径,并且可能扩展到其他III-V族纳米线。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验