Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
Department of Obstetrics & Gynecology, Seoul National University Seoul Metropolitan Government Borame Medical Center, 20, Borame-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea.
Anal Chim Acta. 2019 Oct 17;1076:110-117. doi: 10.1016/j.aca.2019.05.009. Epub 2019 May 7.
Encoded hydrogel microparticles, synthesized by Stop Flow Lithography (SFL), have shown great potential for microRNA assays for their capability to provide high multiplexing capacity and solution-like hybridization kinetics. However, due to the low conversion of copolymerization during particle synthesis, current hydrogel microparticles can only utilize ∼10% of the input probes that functionalize the particles for miRNA assay. Here, we present a novel method of functionalizing hydrogel microparticles after particle synthesis by utilizing unconverted double bonds remaining inside the hydrogel particles to maximize functional probe incorporation and increase the performance of miRNA assay. This allows covalent bonding of functional probes to the hydrogel network after particle synthesis. Because of the abundance of the unconverted double bonds and accessibility of all probes, the probe density increases about 8.2 times compared to that of particles functionalized during the synthesis. This results lead to an enhanced miRNA assay performance that improves the limit of detection from 4.9 amol to 1.5 amol. In addition, higher specificity and shorter assay time are achieved compared to the previous method. We also demonstrate a potential application of our particles by performing multiplexed miRNA detections in human plasma samples.
编码水凝胶微球,通过停流光刻(SFL)合成,由于其提供高多重检测能力和类似溶液的杂交动力学的能力,在 microRNA 分析方面显示出巨大的潜力。然而,由于在颗粒合成过程中共聚转化率低,目前的水凝胶微球只能利用用于 miRNA 分析的颗粒官能化的输入探针的约 10%。在这里,我们提出了一种在颗粒合成后通过利用水凝胶颗粒内部残留的未转化双键来官能化水凝胶微球的新方法,以最大限度地提高功能探针的掺入并提高 miRNA 分析的性能。这允许在颗粒合成后将功能探针共价键合到水凝胶网络上。由于未转化双键的丰富性和所有探针的可及性,与在合成过程中官能化的颗粒相比,探针密度增加了约 8.2 倍。这导致 miRNA 分析性能得到增强,检测限从 4.9 amol 提高到 1.5 amol。与以前的方法相比,还实现了更高的特异性和更短的检测时间。我们还通过在人血浆样本中进行多重 miRNA 检测来展示我们的颗粒的潜在应用。