Suppr超能文献

深度卷积神经网络在人脸识别训练中所获取的社交特质信息。

Social Trait Information in Deep Convolutional Neural Networks Trained for Face Identification.

机构信息

School of Behavioral and Brain Sciences, The University of Texas at Dallas.

University of Maryland Institute for Advanced Computer Studies, University of Maryland.

出版信息

Cogn Sci. 2019 Jun;43(6):e12729. doi: 10.1111/cogs.12729.

Abstract

Faces provide information about a person's identity, as well as their sex, age, and ethnicity. People also infer social and personality traits from the face - judgments that can have important societal and personal consequences. In recent years, deep convolutional neural networks (DCNNs) have proven adept at representing the identity of a face from images that vary widely in viewpoint, illumination, expression, and appearance. These algorithms are modeled on the primate visual cortex and consist of multiple processing layers of simulated neurons. Here, we examined whether a DCNN trained for face identification also retains a representation of the information in faces that supports social-trait inferences. Participants rated male and female faces on a diverse set of 18 personality traits. Linear classifiers were trained with cross validation to predict human-assigned trait ratings from the 512 dimensional representations of faces that emerged at the top-layer of a DCNN trained for face identification. The network was trained with 494,414 images of 10,575 identities and consisted of seven layers and 19.8 million parameters. The top-level DCNN features produced by the network predicted the human-assigned social trait profiles with good accuracy. Human-assigned ratings for the individual traits were also predicted accurately. We conclude that the face representations that emerge from DCNNs retain facial information that goes beyond the strict limits of their training.

摘要

面部提供了有关一个人的身份、性别、年龄和种族的信息。人们还可以从面部推断出社会和个性特征——这些判断可能会产生重要的社会和个人后果。近年来,深度卷积神经网络(DCNN)已被证明能够从视角、光照、表情和外貌差异很大的图像中代表面部的身份。这些算法是基于灵长类动物视觉皮层建模的,由多个模拟神经元的处理层组成。在这里,我们研究了一个经过身份识别训练的 DCNN 是否还保留了支持社会特征推断的面部信息的表示。参与者对男性和女性的面孔进行了一系列 18 种不同个性特征的评分。使用交叉验证训练线性分类器,以从经过身份识别训练的 DCNN 的顶层出现的 512 维面部表示中预测人类分配的特征评分。该网络经过 494,414 张 10,575 张面孔的图像训练,包含 7 个层和 1980 万个参数。网络生成的顶级 DCNN 特征可以准确地预测人类分配的社会特征。对个别特征的人类分配评分也能准确预测。我们得出的结论是,DCNN 中出现的面部表示保留了超出其训练严格限制的面部信息。

相似文献

2
Seeing through disguise: Getting to know you with a deep convolutional neural network.
Cognition. 2021 Jun;211:104611. doi: 10.1016/j.cognition.2021.104611. Epub 2021 Feb 13.
5
Face Space Representations in Deep Convolutional Neural Networks.
Trends Cogn Sci. 2018 Sep;22(9):794-809. doi: 10.1016/j.tics.2018.06.006. Epub 2018 Aug 7.
6
Face Recognition by Humans and Machines: Three Fundamental Advances from Deep Learning.
Annu Rev Vis Sci. 2021 Sep 15;7:543-570. doi: 10.1146/annurev-vision-093019-111701. Epub 2021 Aug 4.
7
Intracranial Electroencephalography and Deep Neural Networks Reveal Shared Substrates for Representations of Face Identity and Expressions.
J Neurosci. 2023 Jun 7;43(23):4291-4303. doi: 10.1523/JNEUROSCI.1277-22.2023. Epub 2023 May 4.
8
A Cautionary Note on Predicting Social Judgments from Faces with Deep Neural Networks.
Affect Sci. 2021;2(4):438-454. doi: 10.1007/s42761-021-00075-5. Epub 2021 Sep 20.
10
Modeling naturalistic face processing in humans with deep convolutional neural networks.
Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2304085120. doi: 10.1073/pnas.2304085120. Epub 2023 Oct 17.

引用本文的文献

1
The reanimation of pseudoscience in machine learning and its ethical repercussions.
Patterns (N Y). 2024 Aug 1;5(9):101027. doi: 10.1016/j.patter.2024.101027. eCollection 2024 Sep 13.
2
Face to face: Comparing ChatGPT with human performance on face matching.
Perception. 2025 Jan;54(1):65-68. doi: 10.1177/03010066241295992. Epub 2024 Nov 5.
3
Comprehensive Social Trait Judgments From Faces in Autism Spectrum Disorder.
Psychol Sci. 2023 Oct;34(10):1121-1145. doi: 10.1177/09567976231192236. Epub 2023 Sep 6.
4
Development and Internal Validation of Risk Assessment Models for Chronic Obstructive Pulmonary Disease in Coal Workers.
Int J Environ Res Public Health. 2023 Feb 18;20(4):3655. doi: 10.3390/ijerph20043655.
5
First impressions from faces in the real world: Commentary on Sutherland and Young (2022).
Br J Psychol. 2023 May;114(2):508-510. doi: 10.1111/bjop.12621. Epub 2022 Dec 14.
6
Understanding trait impressions from faces.
Br J Psychol. 2022 Nov;113(4):1056-1078. doi: 10.1111/bjop.12583. Epub 2022 Jul 26.
7
Deep models of superficial face judgments.
Proc Natl Acad Sci U S A. 2022 Apr 26;119(17):e2115228119. doi: 10.1073/pnas.2115228119. Epub 2022 Apr 21.
8
A Cautionary Note on Predicting Social Judgments from Faces with Deep Neural Networks.
Affect Sci. 2021;2(4):438-454. doi: 10.1007/s42761-021-00075-5. Epub 2021 Sep 20.
9
Task Modulation of Single-Neuron Activity in the Human Amygdala and Hippocampus.
eNeuro. 2022 Jan 19;9(1). doi: 10.1523/ENEURO.0398-21.2021. Print 2022 Jan-Feb.

本文引用的文献

1
Face Space Representations in Deep Convolutional Neural Networks.
Trends Cogn Sci. 2018 Sep;22(9):794-809. doi: 10.1016/j.tics.2018.06.006. Epub 2018 Aug 7.
2
A Revised Neural Framework for Face Processing.
Annu Rev Vis Sci. 2015 Nov 24;1:393-416. doi: 10.1146/annurev-vision-082114-035518.
3
Using goal-driven deep learning models to understand sensory cortex.
Nat Neurosci. 2016 Mar;19(3):356-65. doi: 10.1038/nn.4244.
4
Explicit information for category-orthogonal object properties increases along the ventral stream.
Nat Neurosci. 2016 Apr;19(4):613-22. doi: 10.1038/nn.4247. Epub 2016 Feb 22.
5
Modeling first impressions from highly variable facial images.
Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):E3353-61. doi: 10.1073/pnas.1409860111. Epub 2014 Jul 28.
6
Misleading first impressions: different for different facial images of the same person.
Psychol Sci. 2014 Jul;25(7):1404-17. doi: 10.1177/0956797614532474. Epub 2014 May 27.
7
Performance-optimized hierarchical models predict neural responses in higher visual cortex.
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8619-24. doi: 10.1073/pnas.1403112111. Epub 2014 May 8.
8
Social inferences from faces: ambient images generate a three-dimensional model.
Cognition. 2013 Apr;127(1):105-18. doi: 10.1016/j.cognition.2012.12.001. Epub 2013 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验