Suppr超能文献

脑血管可塑性:导致脑微血管结构发生变化的过程。

Cerebrovascular plasticity: Processes that lead to changes in the architecture of brain microvessels.

机构信息

1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.

2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

J Cereb Blood Flow Metab. 2019 Aug;39(8):1413-1432. doi: 10.1177/0271678X19855875. Epub 2019 Jun 17.

Abstract

The metabolic demands of the brain are met by oxygen and glucose, supplied by a complex hierarchical network of microvessels (arterioles, capillaries, and venules). Transient changes in neural activity are accommodated by local dilation of arterioles or capillaries to increase cerebral blood flow and hence nutrient availability. Transport and communication between the circulation and the brain is regulated by the brain microvascular endothelial cells that form the blood-brain barrier. Under homeostatic conditions, there is very little turnover in brain microvascular endothelial cells, and the cerebrovascular architecture is largely static. However, changes in the brain microenvironment, due to environmental factors, disease, or trauma, can result in additive or subtractive changes in cerebrovascular architecture. Additions occur by angiogenesis or vasculogenesis, whereas subtractions occur by vascular pruning, injury, or endothelial cell death. Here we review the various processes that lead to changes in the cerebrovascular architecture, including sustained changes in the brain microenvironment, development and aging, and injury, disease, and repair.

摘要

大脑的代谢需求由氧气和葡萄糖来满足,这些物质由一个复杂的微血管(小动脉、毛细血管和小静脉)层级网络来供应。神经活动的短暂变化通过小动脉或毛细血管的局部扩张来适应,以增加脑血流,从而增加营养物质的供应。循环系统和大脑之间的运输和通讯由形成血脑屏障的脑微血管内皮细胞来调节。在稳态条件下,脑微血管内皮细胞的更替非常少,脑血管结构在很大程度上是静态的。然而,由于环境因素、疾病或创伤等原因,大脑微环境的变化会导致脑血管结构发生附加或减法变化。增加是通过血管生成或血管发生来实现的,而减法是通过血管修剪、损伤或内皮细胞死亡来实现的。在这里,我们回顾了导致脑血管结构变化的各种过程,包括大脑微环境的持续变化、发育和衰老、以及损伤、疾病和修复。

相似文献

1
Cerebrovascular plasticity: Processes that lead to changes in the architecture of brain microvessels.
J Cereb Blood Flow Metab. 2019 Aug;39(8):1413-1432. doi: 10.1177/0271678X19855875. Epub 2019 Jun 17.
2
Neurovascular dysfunction in dementia - human cellular models and molecular mechanisms.
Clin Sci (Lond). 2018 Feb 14;132(3):399-418. doi: 10.1042/CS20160720.
4
Revisiting the neurovascular unit.
Nat Neurosci. 2021 Sep;24(9):1198-1209. doi: 10.1038/s41593-021-00904-7. Epub 2021 Aug 5.
5
Neuronal regulation of the blood-brain barrier and neurovascular coupling.
Nat Rev Neurosci. 2020 Aug;21(8):416-432. doi: 10.1038/s41583-020-0322-2. Epub 2020 Jul 7.
6
Cellular Control of Brain Capillary Blood Flow: In Vivo Imaging Veritas.
Trends Neurosci. 2019 Aug;42(8):528-536. doi: 10.1016/j.tins.2019.05.009. Epub 2019 Jun 26.
7
Whisker-evoked neurovascular coupling is preserved during hypoglycemia in mouse cortical arterioles and capillaries.
J Cereb Blood Flow Metab. 2024 Feb;44(2):155-168. doi: 10.1177/0271678X231201241. Epub 2023 Sep 20.
8
Optical imaging and modulation of neurovascular responses.
J Cereb Blood Flow Metab. 2018 Dec;38(12):2057-2072. doi: 10.1177/0271678X18803372. Epub 2018 Oct 18.
10
Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease.
Nat Rev Neurosci. 2017 Jul;18(7):419-434. doi: 10.1038/nrn.2017.48. Epub 2017 May 18.

引用本文的文献

1
Evidence for a sustained cerebrovascular response following motor practice.
Imaging Neurosci (Camb). 2024 Aug 29;2. doi: 10.1162/imag_a_00282. eCollection 2024.
4
Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease.
Cells. 2024 Jul 29;13(15):1276. doi: 10.3390/cells13151276.
6
Vascular Aging in Ischemic Stroke.
J Am Heart Assoc. 2024 Aug 6;13(15):e033341. doi: 10.1161/JAHA.123.033341. Epub 2024 Jul 18.
8
Functional and Therapeutic Potential of in Health Benefits.
Nutrients. 2024 Mar 17;16(6):872. doi: 10.3390/nu16060872.
10
The influence of physiological and pathological perturbations on blood-brain barrier function.
Front Neurosci. 2023 Oct 23;17:1289894. doi: 10.3389/fnins.2023.1289894. eCollection 2023.

本文引用的文献

2
Benchmarking in vitro tissue-engineered blood-brain barrier models.
Fluids Barriers CNS. 2018 Dec 4;15(1):32. doi: 10.1186/s12987-018-0117-2.
3
Human iPSC-derived blood-brain barrier microvessels: validation of barrier function and endothelial cell behavior.
Biomaterials. 2019 Jan;190-191:24-37. doi: 10.1016/j.biomaterials.2018.10.023. Epub 2018 Oct 25.
4
Basement membrane and stroke.
J Cereb Blood Flow Metab. 2019 Jan;39(1):3-19. doi: 10.1177/0271678X18801467. Epub 2018 Sep 18.
5
3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes.
Biomaterials. 2018 Oct;180:117-129. doi: 10.1016/j.biomaterials.2018.07.014. Epub 2018 Jul 12.
6
Stimulation-induced increases in cerebral blood flow and local capillary vasoconstriction depend on conducted vascular responses.
Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):E5796-E5804. doi: 10.1073/pnas.1707702115. Epub 2018 Jun 4.
7
Global Burden of Stroke.
Semin Neurol. 2018 Apr;38(2):208-211. doi: 10.1055/s-0038-1649503. Epub 2018 May 23.
8
Physiology and molecular biology of barrier mechanisms in the fetal and neonatal brain.
J Physiol. 2018 Dec;596(23):5723-5756. doi: 10.1113/JP275376. Epub 2018 Jul 15.
9
Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders.
Nat Rev Neurol. 2018 Mar;14(3):133-150. doi: 10.1038/nrneurol.2017.188. Epub 2018 Jan 29.
10
The role of nitric oxide in stroke.
Med Gas Res. 2017 Oct 17;7(3):194-203. doi: 10.4103/2045-9912.215750. eCollection 2017 Jul-Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验