Suppr超能文献

人工智能与个性化医疗。

Artificial Intelligence and Personalized Medicine.

作者信息

Schork Nicholas J

机构信息

Department of Quantitative Medicine, The Translational Genomics Research Institute (TGen), Phoenix, AZ, USA.

The City of Hope/TGen IMPACT Center, Duarte, CA, USA.

出版信息

Cancer Treat Res. 2019;178:265-283. doi: 10.1007/978-3-030-16391-4_11.

Abstract

The development of high-throughput, data-intensive biomedical research assays and technologies has created a need for researchers to develop strategies for analyzing, integrating, and interpreting the massive amounts of data they generate. Although a wide variety of statistical methods have been designed to accommodate 'big data,'  experiences with the use of artificial intelligence (AI) techniques suggest that they might be particularly appropriate. In addition,  the results of the application of these assays reveal a great heterogeneity in the pathophysiologic factors and processes that contribute to disease, suggesting that there is a need to tailor, or 'personalize,' medicines to the nuanced and often unique features possessed by individual patients. Given how important data-intensive assays are to revealing appropriate intervention targets and strategies for  treating an individual with a disease, AI can play an important role in the development of personalized medicines. We describe many areas where AI can play such a role and argue that AI's ability to advance personalized medicine will depend critically on not only the refinement of relevant assays, but also on ways of storing, aggregating, accessing, and ultimately integrating, the data they produce. We also point out the limitations of many AI techniques in developing personalized medicines as well as consider areas for further research.

摘要

高通量、数据密集型生物医学研究分析方法和技术的发展,使得研究人员需要制定策略来分析、整合和解读他们所产生的海量数据。尽管已经设计出各种各样的统计方法来处理“大数据”,但人工智能(AI)技术的应用经验表明,它们可能特别适用。此外,这些分析方法的应用结果揭示了导致疾病的病理生理因素和过程存在很大的异质性,这表明需要根据个体患者所具有的细微且往往独特的特征来定制或“个性化”药物。鉴于数据密集型分析方法对于揭示针对患有某种疾病的个体的适当干预靶点和策略非常重要,人工智能在个性化药物的开发中可以发挥重要作用。我们描述了人工智能可以发挥这种作用的许多领域,并认为人工智能推进个性化医疗的能力将严重依赖于不仅要完善相关分析方法,还要依赖于存储、汇总、访问以及最终整合它们所产生的数据的方式。我们还指出了许多人工智能技术在开发个性化药物方面的局限性,并考虑了进一步研究的领域。

相似文献

1
Artificial Intelligence and Personalized Medicine.
Cancer Treat Res. 2019;178:265-283. doi: 10.1007/978-3-030-16391-4_11.
2
Future Direction for Using Artificial Intelligence to Predict and Manage Hypertension.
Curr Hypertens Rep. 2018 Jul 6;20(9):75. doi: 10.1007/s11906-018-0875-x.
3
Big Data, Machine Learning, and Artificial Intelligence to Advance Cancer Care: Opportunities and Challenges.
Semin Oncol Nurs. 2023 Jun;39(3):151429. doi: 10.1016/j.soncn.2023.151429. Epub 2023 Apr 20.
4
Artificial intelligence: A joint narrative on potential use in pediatric stem and immune cell therapies and regenerative medicine.
Transfus Apher Sci. 2018 Jun;57(3):422-424. doi: 10.1016/j.transci.2018.05.004. Epub 2018 May 9.
5
Artificial Intelligence in Precision Cardiovascular Medicine.
J Am Coll Cardiol. 2017 May 30;69(21):2657-2664. doi: 10.1016/j.jacc.2017.03.571.
6
Perspective of artificial intelligence in healthcare data management: A journey towards precision medicine.
Comput Biol Med. 2023 Aug;162:107051. doi: 10.1016/j.compbiomed.2023.107051. Epub 2023 May 30.
7
Personalized medicine: motivation, challenges, and progress.
Fertil Steril. 2018 Jun;109(6):952-963. doi: 10.1016/j.fertnstert.2018.05.006.
8
Recent Advances of Utilizing Artificial Intelligence in Lab on a Chip for Diagnosis and Treatment.
Small. 2022 Oct;18(42):e2203169. doi: 10.1002/smll.202203169. Epub 2022 Aug 26.
9
Artificial intelligence in the diagnosis of cardiovascular disease.
Rev Assoc Med Bras (1992). 2019 Dec;65(12):1438-1441. doi: 10.1590/1806-9282.65.12.1438.
10
Integrative toxicogenomics: Advancing precision medicine and toxicology through artificial intelligence and OMICs technology.
Biomed Pharmacother. 2023 Jul;163:114784. doi: 10.1016/j.biopha.2023.114784. Epub 2023 Apr 28.

引用本文的文献

1
Artificial General Intelligence and Its Threat to Public Health.
J Eval Clin Pract. 2025 Sep;31(6):e70269. doi: 10.1111/jep.70269.
3
Living Medicines Engineered to Fight: A Comprehensive Review on CAR T-Cell Therapy.
Int J Hematol Oncol Stem Cell Res. 2025 Apr 1;19(2):180-190. doi: 10.18502/ijhoscr.v19i2.18555.
5
Artificial intelligence for diagnosing bladder pathophysiology: An updated review and future prospects.
Bladder (San Franc). 2025 Apr 10;12(2):e21200042. doi: 10.14440/bladder.2024.0054. eCollection 2025.
8
Comparing the value of perceived human versus AI-generated empathy.
Nat Hum Behav. 2025 Jun 30. doi: 10.1038/s41562-025-02247-w.
9
10

本文引用的文献

1
Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices.
NPJ Digit Med. 2018 Aug 28;1:39. doi: 10.1038/s41746-018-0040-6. eCollection 2018.
2
Scalable and accurate deep learning with electronic health records.
NPJ Digit Med. 2018 May 8;1:18. doi: 10.1038/s41746-018-0029-1. eCollection 2018.
3
How Bioethics Can Shape Artificial Intelligence and Machine Learning.
Hastings Cent Rep. 2018 Sep;48(5):10-13. doi: 10.1002/hast.895.
4
The approach to predictive medicine that is taking genomics research by storm.
Nature. 2018 Oct;562(7726):181-183. doi: 10.1038/d41586-018-06956-3.
5
The UK Biobank resource with deep phenotyping and genomic data.
Nature. 2018 Oct;562(7726):203-209. doi: 10.1038/s41586-018-0579-z. Epub 2018 Oct 10.
6
Application of induced pluripotent stem cell transplants: Autologous or allogeneic?
Life Sci. 2018 Nov 1;212:145-149. doi: 10.1016/j.lfs.2018.09.057. Epub 2018 Oct 2.
7
Allogeneic CAR-T Cells: More than Ease of Access?
Cells. 2018 Oct 1;7(10):155. doi: 10.3390/cells7100155.
8
Progress and potential in organoid research.
Nat Rev Genet. 2018 Nov;19(11):671-687. doi: 10.1038/s41576-018-0051-9.
9
Using EMR-enabled computerized decision support systems to reduce prescribing of potentially inappropriate medications: a narrative review.
Ther Adv Drug Saf. 2018 Jul 12;9(9):559-573. doi: 10.1177/2042098618784809. eCollection 2018 Sep.
10
Concordance Study Between IBM Watson for Oncology and Clinical Practice for Patients with Cancer in China.
Oncologist. 2019 Jun;24(6):812-819. doi: 10.1634/theoncologist.2018-0255. Epub 2018 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验