Kuzzay Denis, Alexandrova Olga, Matteini Lorenzo
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, 5 Place Jules Janssen, 92195 Meudon, France.
Phys Rev E. 2019 May;99(5-1):053202. doi: 10.1103/PhysRevE.99.053202.
We present a local approach to the study of scale-to-scale energy transfers in magnetohydrodynamic (MHD) turbulence. This approach is based on performing local averages of the physical fields, which amounts to filtering scales smaller than some parameter ℓ. A key step in this work is the derivation of a local Kármán-Howarth-Monin relation which provides a local form of Politano and Pouquet's 4/3 law, without any assumption of homogeneity or isotropy. Our approach is exact and nonrandom, and we show its connection to the usual statistical results of turbulence. Its implementation on data obtained via a three-dimensional direct numerical simulation of the forced incompressible MHD equations from the John Hopkins turbulence database constitutes the main part of our study. First, we show that the local Kármán-Howarth-Monin relation holds well. The space statistics of local cross-scale transfers are studied next, their means and standard deviations being maximum at inertial scales and their probability density functions (PDFs) displaying very wide tails. Events constituting the tails of the PDFs are shown to form structures of strong transfers, either positive or negative, which can be observed over the whole available range of scales. As ℓ is decreased, these structures become more and more localized in space while contributing to an increasing fraction of the mean energy cascade rate. Finally, we highlight their quasi-one-dimensional (filamentlike) or quasi-two-dimensional (sheetlike or ribbonlike) nature and show that they appear in areas of strong vorticity or electric current density.
我们提出了一种研究磁流体动力学(MHD)湍流中尺度间能量传递的局部方法。该方法基于对物理场进行局部平均,这相当于对小于某个参数ℓ的尺度进行滤波。这项工作的关键步骤是推导局部卡门 - 霍华斯 - 莫宁关系,它提供了波利塔诺和普凯4/3定律的局部形式,且无需任何均匀性或各向同性假设。我们的方法是精确且非随机的,并且我们展示了它与湍流通常统计结果的联系。在通过约翰霍普金斯湍流数据库对强迫不可压缩MHD方程进行三维直接数值模拟获得的数据上实施该方法构成了我们研究的主要部分。首先,我们表明局部卡门 - 霍华斯 - 莫宁关系成立。接下来研究了局部跨尺度传递的空间统计,它们的均值和标准差在惯性尺度处最大,并且它们的概率密度函数(PDF)显示出非常宽的尾部。构成PDF尾部的事件被证明形成了强传递的结构,无论是正向还是负向,在整个可用尺度范围内都可以观察到。随着ℓ减小,这些结构在空间中变得越来越局部化,同时对平均能量级串率的贡献比例不断增加。最后,我们强调了它们的准一维(丝状)或准二维(片状或带状)性质,并表明它们出现在强涡度或电流密度区域。