Suppr超能文献

基于 LSTM 的真实环境下有毒气体扩散规律的直接预测。

Direct Prediction of the Toxic Gas Diffusion Rule in a Real Environment Based on LSTM.

机构信息

Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230029, China.

State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230029, China.

出版信息

Int J Environ Res Public Health. 2019 Jun 17;16(12):2133. doi: 10.3390/ijerph16122133.

Abstract

Predicting the diffusion rule of toxic gas plays a distinctly important role in emergency capability assessment and rescue work. Among diffusion prediction models, the traditional artificial neural network has exhibited excellent performance not only in prediction accuracy but also in calculation time. Nevertheless, with the continuous development of deep learning and data science, some new prediction models based on deep learning algorithms have been shown to be more advantageous because their structure can better discover internal laws and external connections between input data and output data. The long short-term memory (LSTM) network is a kind of deep learning neural network that has demonstrated outstanding achievements in many prediction fields. This paper applies the LSTM network directly to the prediction of toxic gas diffusion and uses the Project Prairie Grass dataset to conduct experiments. Compared with the Gaussian diffusion model, support vector machine (SVM) model, and back propagation (BP) network model, the LSTM model of deep learning has higher prediction accuracy (especially for the prediction at the point of high concentration values) while avoiding the occurrence of negative concentration values and overfitting problems found in traditional artificial neural network models.

摘要

预测有毒气体的扩散规律在应急能力评估和救援工作中起着至关重要的作用。在扩散预测模型中,传统的人工神经网络不仅在预测精度方面表现出色,而且在计算时间方面也表现出色。然而,随着深度学习和数据科学的不断发展,一些基于深度学习算法的新型预测模型因其结构能够更好地发现输入数据和输出数据之间的内在规律和外部联系,而显示出更大的优势。长短期记忆(LSTM)网络是一种深度学习神经网络,在许多预测领域都取得了卓越的成就。本文直接将 LSTM 网络应用于有毒气体扩散的预测,并使用 PrairieGrass 数据集进行实验。与高斯扩散模型、支持向量机(SVM)模型和反向传播(BP)网络模型相比,深度学习的 LSTM 模型具有更高的预测精度(特别是在高浓度值点的预测方面),同时避免了传统人工神经网络模型中出现的负浓度值和过拟合问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ce3/6617190/0c4392673b35/ijerph-16-02133-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验