Suppr超能文献

多步骤物质分解在光谱 CT 中的应用。

Multi-step material decomposition for spectral computed tomography.

机构信息

Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States of America.

出版信息

Phys Med Biol. 2019 Jul 11;64(14):145001. doi: 10.1088/1361-6560/ab2b0e.

Abstract

Spectral images from photon counting detectors are being explored for material decomposition applications such as for obtaining quantitative maps of tissue types and contrast agents. While these detectors allow acquisition of multi-energy data in a single exposure, separating the total photon counts into multiple energy bins can lead to issues of count starvation and increased quantum noise in resultant maps. Furthermore, the complex decomposition problem is often solved in a single inversion step making it difficult to separate materials with close properties. We propose a multi-step decomposition method which allows solving the problem in multiple steps using the same spectral data collected in a single exposure. During each step, quantitative accuracy of a single material is under focus and one can flexibly optimize the bins chosen in that step. The result thus obtained becomes part of the input data for the next step in the multi-step process. This makes the problem less ill-conditioned and allows better quantitation of more challenging materials within the object. In comparison to a conventional single-step method, we show excellent quantitative accuracy for decomposing up to six materials involving a mix of soft tissue types and contrast agents in micro-CT sized digital phantoms.

摘要

光子计数探测器的光谱图像正被探索用于物质分解应用,例如获得组织类型和对比剂的定量图谱。虽然这些探测器允许在单次曝光中获取多能量数据,但将总光子计数分离到多个能量bins 中可能会导致计数饥饿和所得图谱中量子噪声增加的问题。此外,复杂的分解问题通常在单次反演步骤中解决,这使得难以分离具有相近特性的材料。我们提出了一种多步分解方法,该方法允许使用单次曝光中收集的相同光谱数据在多个步骤中解决问题。在每个步骤中,都关注单一材料的定量准确性,并且可以灵活地优化该步骤中选择的 bins。所得结果成为多步过程中下一步的输入数据的一部分。这使得问题的条件数变差,并且允许对物体内更具挑战性的材料进行更好的定量。与传统的单步方法相比,我们在微 CT 大小的数字体模中对多达六种涉及软组织类型和对比剂混合物的材料进行分解时,显示出出色的定量准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验