Suppr超能文献

利用玻璃态聚合物薄膜中的组织化微纤化实现结构色。

Structural colour using organized microfibrillation in glassy polymer films.

机构信息

Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan.

Department of Molecular Engineering, Kyoto University, Kyoto, Japan.

出版信息

Nature. 2019 Jun;570(7761):363-367. doi: 10.1038/s41586-019-1299-8. Epub 2019 Jun 19.

Abstract

The formation of microscopic cavities and microfibrils at stress hotspots in polymers is typically undesirable and is a contributor to material failure. This type of stress crazing is accelerated by solvents that are typically weak enough not to dissolve the polymer substantially, but which permeate and plasticize the polymer to facilitate the cavity and microfibril formation process. Here we show that microfibril and cavity formation in polymer films can be controlled and harnessed using standing-wave optics to design a periodic stress field within the film. We can then develop the periodic stress field with a weak solvent to create alternating layers of cavity and microfibril-filled polymers, in a process that we call organized stress microfibrillation. These multi-layered porous structures show structural colour across the full visible spectrum, and the colour can be tuned by varying the temperature and solvent conditions under which the films are developed. By further use of standard lithographic and masking tools, the organized stress microfibrillation process becomes an inkless, large-scale colour printing process generating images at resolutions of up to 14,000 dots per inch on a number of flexible and transparent formats.

摘要

聚合物中应力热点处微观空穴和微纤维的形成通常是不理想的,是导致材料失效的原因之一。这种类型的应力开裂会被溶剂加速,这些溶剂通常弱到不足以大量溶解聚合物,但会渗透并塑化聚合物,从而促进空穴和微纤维的形成过程。在这里,我们展示了使用驻波光学在聚合物薄膜内设计周期性应力场,可以控制和利用微纤维和空穴的形成。然后,我们可以用弱溶剂来发展周期性的应力场,在薄膜中形成交替的空穴和充满微纤维的聚合物层,我们称之为有组织的应力微纤维化。这些多层多孔结构在整个可见光谱范围内显示出结构色,并且可以通过改变薄膜开发时的温度和溶剂条件来调节颜色。通过进一步使用标准的光刻和掩模工具,有组织的应力微纤维化过程成为一种无油墨的、大规模的彩色打印过程,可以在多种灵活和透明的格式上以高达每英寸 14000 点的分辨率生成图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验