Suppr超能文献

用于多中心超极化气体 MRI 研究质量保证的热极化 Xe 体模。

A thermally polarized Xe phantom for quality assurance in multi-center hyperpolarized gas MRI studies.

机构信息

Department of Biomedical Engineering, Duke University, Durham, North Carolina.

Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina.

出版信息

Magn Reson Med. 2019 Nov;82(5):1961-1968. doi: 10.1002/mrm.27836. Epub 2019 Jun 19.

Abstract

PURPOSE

Hyperpolarized Xe MR is increasingly being adopted worldwide, but no standards exist for assessing or comparing performance at different Xe imaging centers. Therefore, we sought to develop a thermally polarized xenon phantom assembly, approximating the size of a human torso, along with an associated imaging protocol to enable rapid quality-assurance imaging.

METHODS

MR-compatible pressure vessels, with an internal volume of 5.85 L, were constructed from pressure-rated, engineering grade PE4710 high-density polyethylene. They were filled with a mixture of 61% natural xenon and 39% oxygen to approximately 11.6 bar and placed in a loader shell filled with a 0.56% saline solution to mimic the human chest. Imaging employed a 2D spoiled gradient-echo sequence using non-slice-selective excitation (TR/TE = 750/6.13 ms, flip angle = 74°, FOV = 40 × 440 mm, matrix = 64 × 32, bandwidth = 30 Hz/pixel, averages = 4), resulting in a 1.6 min acquisition. System characterization and imaging were performed at 8 different MRI centers.

RESULTS

At 3 Telsa, Xe in the pressure vessels was characterized by T = 580.5 ± 8.3 ms, linewidth = 0.21 ppm, and chemical shift = +10.2 ppm. The phantom assembly was used to obtain transmit voltage calibrations and 2D and 3D images across multiple coil and scanner configurations at 8 sites. Across the 5 sites that employed a standard flexible chest coil, the SNR was 12.4 ± 1.8.

CONCLUSION

The high-density polyethylene pressure vessels filled with thermally polarized xenon and associated loader shell combine to form a phantom assembly that enables spectroscopic and imaging acquisitions that can be used for testing, quality assurance, and performance tracking-capabilities essential for standardizing hyperpolarized Xe MRI within and across institutions.

摘要

目的

超极化氙磁共振成像在全球范围内的应用日益广泛,但目前还没有评估或比较不同氙成像中心性能的标准。因此,我们试图开发一种热极化氙幻影组件,其大小近似于人体躯干,并制定相关的成像方案,以实现快速的质量保证成像。

方法

采用压力等级为工程级的 PE4710 高密度聚乙烯制造了 5.85 L 内部容积的磁共振兼容压力容器。它们充满了 61%的天然氙气和 39%的氧气,压力约为 11.6 巴,并放置在充满 0.56%生理盐水的加载器壳中,以模拟人体胸部。成像采用二维失相梯度回波序列,采用非切片选择性激励(TR/TE = 750/6.13 ms,翻转角= 74°,视野= 40×440 mm,矩阵= 64×32,带宽= 30 Hz/pixel,平均= 4),采集时间为 1.6 分钟。在 8 个不同的 MRI 中心进行了系统特性和成像。

结果

在 3 特斯拉下,压力容器中的氙气具有 T = 580.5 ± 8.3 ms、线宽= 0.21 ppm 和化学位移= +10.2 ppm 的特点。幻影组件用于在 8 个地点的多个线圈和扫描仪配置中获得传输电压校准和二维和三维图像。在使用标准柔性胸部线圈的 5 个地点中,信噪比为 12.4 ± 1.8。

结论

高密度聚乙烯压力容器充满热极化氙气和相关的加载器壳组合在一起,形成了一个幻影组件,可用于进行光谱和成像采集,可用于测试、质量保证和性能跟踪,这对于在机构内和机构间标准化超极化氙磁共振成像至关重要。

相似文献

1
A thermally polarized Xe phantom for quality assurance in multi-center hyperpolarized gas MRI studies.
Magn Reson Med. 2019 Nov;82(5):1961-1968. doi: 10.1002/mrm.27836. Epub 2019 Jun 19.
2
Dissolved hyperpolarized xenon-129 MRI in human kidneys.
Magn Reson Med. 2020 Jan;83(1):262-270. doi: 10.1002/mrm.27923. Epub 2019 Aug 9.
4
B and magnetization decay correction for hyperpolarized Xe lung imaging using sequential 2D spiral acquisitions.
Magn Reson Med. 2023 Aug;90(2):473-482. doi: 10.1002/mrm.29655. Epub 2023 Mar 29.
6
Hyperpolarized Xe multi-slice imaging of the human brain using a 3D gradient echo pulse sequence.
Magn Reson Med. 2021 Dec;86(6):3175-3181. doi: 10.1002/mrm.28932. Epub 2021 Jul 17.
7
Application of a 2D frequency encoding sectoral approach to hyperpolarized Xe MRI at low field.
J Magn Reson. 2022 Mar;336:107159. doi: 10.1016/j.jmr.2022.107159. Epub 2022 Feb 9.
8
Development of hyperpolarized noble gas MRI.
Nucl Instrum Methods Phys Res A. 1998;402:441-53. doi: 10.1016/s0168-9002(97)00888-7.
9
Hyperpolarized Xe gas transfer MRI: the transition from 1.5T to 3T.
Magn Reson Med. 2018 Dec;80(6):2374-2383. doi: 10.1002/mrm.27377. Epub 2018 Jul 19.

引用本文的文献

1
A thermally polarized, dissolved-phase Xe phantom for quality-control and multisite comparisons of gas-exchange imaging.
J Magn Reson. 2025 Feb;371:107829. doi: 10.1016/j.jmr.2025.107829. Epub 2025 Jan 13.
2
5
In vivo methods and applications of xenon-129 magnetic resonance.
Prog Nucl Magn Reson Spectrosc. 2021 Feb;122:42-62. doi: 10.1016/j.pnmrs.2020.11.002. Epub 2020 Dec 9.

本文引用的文献

2
Using hyperpolarized Xe MRI to quantify regional gas transfer in idiopathic pulmonary fibrosis.
Thorax. 2018 Jan;73(1):21-28. doi: 10.1136/thoraxjnl-2017-210070. Epub 2017 Aug 31.
3
Chronic Obstructive Pulmonary Disease: Lobar Analysis with Hyperpolarized Xe MR Imaging.
Radiology. 2017 Mar;282(3):857-868. doi: 10.1148/radiol.2016152299. Epub 2016 Oct 12.
4
The role of hyperpolarized xenon in MR imaging of pulmonary function.
Eur J Radiol. 2017 Jan;86:343-352. doi: 10.1016/j.ejrad.2016.09.015. Epub 2016 Sep 16.
5
Establishing an accurate gas phase reference frequency to quantify Xe chemical shifts in vivo.
Magn Reson Med. 2017 Apr;77(4):1438-1445. doi: 10.1002/mrm.26229. Epub 2016 Apr 5.
6
ISMRM Raw data format: A proposed standard for MRI raw datasets.
Magn Reson Med. 2017 Jan;77(1):411-421. doi: 10.1002/mrm.26089. Epub 2016 Jan 29.
7
Extending semiautomatic ventilation defect analysis for hyperpolarized (129)Xe ventilation MRI.
Acad Radiol. 2014 Dec;21(12):1530-41. doi: 10.1016/j.acra.2014.07.017. Epub 2014 Sep 26.
8
MRI quality assurance using the ACR phantom in a multi-unit imaging center.
Acta Oncol. 2011 Aug;50(6):966-72. doi: 10.3109/0284186X.2011.582515.
10
Quality assurance of clinical MRI scanners using ACR MRI phantom: preliminary results.
J Digit Imaging. 2004 Dec;17(4):279-84. doi: 10.1007/s10278-004-1023-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验