Suppr超能文献

使用 Geant4-DNA 对金纳米粒子中的电子轨迹结构进行模拟。

Electron track structure simulations in a gold nanoparticle using Geant4-DNA.

机构信息

Centre For Medical Radiation Physics, University of Wollongong, Wollongong, Australia.

Medical Physics Laboratory, University of Ioannina, Medical School, GR-45110 Ioannina, Greece.

出版信息

Phys Med. 2019 Jul;63:98-104. doi: 10.1016/j.ejmp.2019.05.023. Epub 2019 Jun 6.

Abstract

Gold Nanoparticles (GNPs) have recently gained a lot of attention due to their potential benefit to improve the efficacy of X-ray radiotherapy. Owing to their high atomic number, GNPs are able to absorb higher quantities of incident radiation with respect to the surrounding tissue, producing, in particular, photoelectrons and low energy Auger electrons. These additional low energy electrons increase the local energy deposition in the region surrounding the GNP. Monte Carlo simulations play a key role in the investigation of GNP radio-enhancement and it is widely recognised that track structure physics models are the state-of-the-art for nano-scale studies. In 2016, we have developed track structure physics models for the Geant4-DNA toolkit allowing electron transport for microscopic bulk gold (Geant4_DNA_AU_2016) and we have recently improved them in the low energy domain (Geant4_DNA_AU_2018). In this paper, we report the benchmarking of these newly developed physics models when calculating the physical dose and the Dose Enhancement Factor (DEF) around a GNP. We demonstrate that Geant4_DNA_AU_2018 models give similar azimuthal distribution of two dimensional absorbed dose around a single GNP, but result in larger absorbed dose and DEF than Geant4_DNA_AU_2016 models. In parallel, we investigated the performance of a newly developed multiple scattering model in Geant4 based on the Goudsmit-Saunderson (GS) model, when used together with the electromagnetic physics models with the Geant4 Livermore condensed-history approach. Our results show that the GS model does not affect the results of the simulations when studying GNP radio-enhancement with a condensed-history approach.

摘要

金纳米颗粒(GNPs)由于其提高 X 射线放射疗法疗效的潜力而受到广泛关注。由于其高原子数,GNPs 能够比周围组织吸收更多数量的入射辐射,特别是产生光电子和低能俄歇电子。这些额外的低能电子增加了 GNP 周围区域的局部能量沉积。蒙特卡罗模拟在 GNP 放射增强的研究中起着关键作用,人们广泛认识到,轨道结构物理模型是纳米尺度研究的最新技术。2016 年,我们为 Geant4-DNA 工具包开发了轨道结构物理模型,允许对微观块状金进行电子传输(Geant4_DNA_AU_2016),并且我们最近在低能域对其进行了改进(Geant4_DNA_AU_2018)。在本文中,我们报告了在计算 GNP 周围的物理剂量和剂量增强因子(DEF)时,这些新开发的物理模型的基准测试结果。我们证明,Geant4_DNA_AU_2018 模型在单个 GNP 周围计算二维吸收剂量的各向异性分布时给出了相似的结果,但与 Geant4_DNA_AU_2016 模型相比,吸收剂量和 DEF 更大。同时,我们研究了基于 Goudsmit-Saunderson(GS)模型的新开发的多重散射模型在 Geant4 中的性能,当与基于 Geant4 Livermore 凝聚历史方法的电磁物理模型一起使用时。我们的结果表明,当使用凝聚历史方法研究 GNP 放射增强时,GS 模型不会影响模拟结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验