Suppr超能文献

睡眠样慢波通过丘脑-皮层模型中的突触稳态和记忆关联改善视觉分类。

Sleep-like slow oscillations improve visual classification through synaptic homeostasis and memory association in a thalamo-cortical model.

机构信息

INFN Sezione di Roma, Rome, Italy.

PhD Program in Behavioural Neuroscience, "Sapienza" University of Rome, Rome, Italy.

出版信息

Sci Rep. 2019 Jun 20;9(1):8990. doi: 10.1038/s41598-019-45525-0.

Abstract

The occurrence of sleep passed through the evolutionary sieve and is widespread in animal species. Sleep is known to be beneficial to cognitive and mnemonic tasks, while chronic sleep deprivation is detrimental. Despite the importance of the phenomenon, a complete understanding of its functions and underlying mechanisms is still lacking. In this paper, we show interesting effects of deep-sleep-like slow oscillation activity on a simplified thalamo-cortical model which is trained to encode, retrieve and classify images of handwritten digits. During slow oscillations, spike-timing-dependent-plasticity (STDP) produces a differential homeostatic process. It is characterized by both a specific unsupervised enhancement of connections among groups of neurons associated to instances of the same class (digit) and a simultaneous down-regulation of stronger synapses created by the training. This hierarchical organization of post-sleep internal representations favours higher performances in retrieval and classification tasks. The mechanism is based on the interaction between top-down cortico-thalamic predictions and bottom-up thalamo-cortical projections during deep-sleep-like slow oscillations. Indeed, when learned patterns are replayed during sleep, cortico-thalamo-cortical connections favour the activation of other neurons coding for similar thalamic inputs, promoting their association. Such mechanism hints at possible applications to artificial learning systems.

摘要

睡眠的发生通过了进化的筛选,在动物物种中广泛存在。睡眠被认为对认知和记忆任务有益,而慢性睡眠剥夺则有害。尽管这种现象很重要,但对其功能和潜在机制的全面理解仍然缺乏。在本文中,我们展示了深度睡眠样慢波活动对简化的丘脑-皮层模型的有趣影响,该模型经过训练可对手写数字的图像进行编码、检索和分类。在慢波期间,尖峰时间依赖性可塑性(STDP)产生了一种差异化的自动调节过程。它的特点是,在相同类别的实例(数字)之间的神经元组之间进行特定的非监督增强,同时对由训练产生的更强的突触进行下调。这种睡眠后内部表示的层次组织有利于在检索和分类任务中取得更高的性能。该机制基于深度睡眠样慢波期间自上而下的皮质-丘脑预测和自下而上的丘脑-皮质投射之间的相互作用。事实上,当在睡眠中重放已学习的模式时,皮质-丘脑-皮质连接有利于激活编码类似丘脑输入的其他神经元,促进它们的关联。这种机制暗示了可能应用于人工学习系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a627/6586839/51c8f5e476bb/41598_2019_45525_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验