Suppr超能文献

利用鲁棒自适应控制技术同步具有未知参数和扩散效应的非同质神经网络

Synchronization of Nonidentical Neural Networks With Unknown Parameters and Diffusion Effects via Robust Adaptive Control Techniques.

出版信息

IEEE Trans Cybern. 2021 Feb;51(2):660-672. doi: 10.1109/TCYB.2019.2921633. Epub 2021 Jan 15.

Abstract

This paper considers the self-synchronization and tracking synchronization issues for a class of nonidentically coupled neural networks model with unknown parameters and diffusion effects. Using the special structure of neural networks with global Lipschitz activation function, nonidentical terms are treated as external disturbances, which can then be compensated via robust adaptive control techniques. For the case where no common reference trajectory is given in advance, a distributed adaptive controller is proposed to drive the synchronization error to an adjustable bounded area. For the case where a reference trajectory is predesigned, two distributed adaptive controllers are proposed, respectively, to address the tracking synchronization problem with bounded and unbounded reference trajectories, different decomposition methods are given to extract the heterogeneous characteristics. To avoid the appearance of global information, such as the spectrum of the coupling matrix, corresponding adaptive designs on coupling strengths are also provided for both cases. Moreover, the upper bounds of the final synchronization errors can be gradually adjusted according to the parameters of the adaptive designs. Finally, numerical examples are given to test the effectiveness of the control algorithms.

摘要

本文考虑了一类具有未知参数和扩散效应的非一致耦合神经网络模型的自同步和跟踪同步问题。利用具有全局 Lipschitz 激活函数的神经网络的特殊结构,将非一致性项视为外部干扰,可以通过鲁棒自适应控制技术进行补偿。对于没有预先给定公共参考轨迹的情况,提出了一种分布式自适应控制器,将同步误差驱动到可调节的有界区域。对于给定参考轨迹的情况,分别提出了两个分布式自适应控制器,分别解决具有有界和无界参考轨迹的跟踪同步问题,给出了不同的分解方法来提取异质特征。为了避免出现全局信息,如耦合矩阵的谱,对于这两种情况,还分别提供了关于耦合强度的相应自适应设计。此外,最终同步误差的上界可以根据自适应设计的参数逐渐调整。最后,给出了数值示例来验证控制算法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验