Graduate Program of Evolutive Genetics and Molecular Biology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil.
Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan.
Sci Rep. 2019 Jun 21;9(1):8998. doi: 10.1038/s41598-019-44534-3.
How the unique luciferase of Phrixothrix hirtus (PxRE) railroad worm catalyzes the emission of red bioluminescence using the same luciferin of fireflies, remains a mystery. Although PxRE luciferase is a very attractive tool for bioanalysis and bioimaging in hemoglobin rich tissues, it displays lower quantum yield (15%) when compared to green emitting luciferases (>40%). To identify which parts of PxRE luciferin binding site (LBS) determine bioluminescence color, and to develop brighter and more red-shifted emitting luciferases, we compared the effects of site-directed mutagenesis and of larger 6'-substituted aminoluciferin analogues (6'-morpholino- and 6'-pyrrolidinyl-LH) on the bioluminescence properties of PxRE and green-yellow emitting beetle luciferases. The effects of mutations in the benzothiazolyl and thiazolyl parts of PxRE LBS on the K and catalytic efficiencies, indicated their importance for luciferin binding and catalysis. However, the absence of effects on the bioluminescence spectrum indicated a less interactive LBS in PxRE during light emission. Mutations at the bottom of LBS of PxRE blue-shifted the spectra and increased catalytic efficiency, suggesting that lack of interactions of this part of LBS with excited oxyluciferin phenolate underlie red light emission. The much higher bioluminescence activity and red-shifted spectra of PxRE luciferase with 6'-morpholino- (634 nm) and 6'-pyrrolidinyl-luciferins (644 nm), when compared to other beetle luciferases, revealed a larger luciferin phenolate binding pocket. The size and orientation of the side-chains of L/I/H348 are critical for amino-analogues accommodation and modulate bioluminescence color, affecting the interactions and mobility of excited oxyluciferin phenolate. The PxRE luciferase and 6'-aminoluciferins provide potential far-red combinations for bioimaging applications.
Phrixothrix hirtus(PxRE) Railroad Worm 特有的荧光素酶如何利用与萤火虫相同的荧光素催化红色生物发光,仍然是一个谜。尽管 PxRE 荧光素酶在富含血红蛋白的组织中的生物分析和生物成像中是一种非常有吸引力的工具,但与发绿光的荧光素酶(>40%)相比,它的量子产率(15%)较低。为了确定 PxRE 荧光素结合位点(LBS)的哪些部分决定生物发光颜色,并开发更亮、更红移发射的荧光素酶,我们比较了定点突变和较大的 6'-取代氨基荧光素类似物(6'-吗啉基和 6'-吡咯烷基 LH)对 PxRE 和绿黄色发光甲虫荧光素酶生物发光特性的影响。PxRE LBS 中苯并噻唑基和噻唑基部分突变对 K 和催化效率的影响表明它们对荧光素结合和催化很重要。然而,对生物发光光谱没有影响表明在光发射过程中 PxRE 的 LBS 相互作用较少。PxRE LBS 底部的突变使光谱蓝移并提高了催化效率,表明该 LBS 部分与激发的氧荧光素酚盐缺乏相互作用是红光发射的基础。与其他甲虫荧光素酶相比,PxRE 荧光素酶与 6'-吗啉基(634nm)和 6'-吡咯烷基-LH 的生物发光活性更高且光谱红移,表明更大的荧光素酚盐结合口袋。L/I/H348 的侧链大小和取向对于氨基酸类似物的容纳至关重要,并调节生物发光颜色,影响激发的氧荧光素酚盐的相互作用和迁移性。PxRE 荧光素酶和 6'-氨基荧光素为生物成像应用提供了潜在的远红组合。