Suppr超能文献

不同的多巴胺受体途径为联想学习的时间敏感性提供了基础。

Distinct Dopamine Receptor Pathways Underlie the Temporal Sensitivity of Associative Learning.

机构信息

Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA.

State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China.

出版信息

Cell. 2019 Jun 27;178(1):60-75.e19. doi: 10.1016/j.cell.2019.05.040. Epub 2019 Jun 20.

Abstract

Animals rely on the relative timing of events in their environment to form and update predictive associations, but the molecular and circuit mechanisms for this temporal sensitivity remain incompletely understood. Here, we show that olfactory associations in Drosophila can be written and reversed on a trial-by-trial basis depending on the temporal relationship between an odor cue and dopaminergic reinforcement. Through the synchronous recording of neural activity and behavior, we show that reversals in learned odor attraction correlate with bidirectional neural plasticity in the mushroom body, the associative olfactory center of the fly. Two dopamine receptors, DopR1 and DopR2, contribute to this temporal sensitivity by coupling to distinct second messengers and directing either synaptic depression or potentiation. Our results reveal how dopamine-receptor signaling pathways can detect the order of events to instruct opposing forms of synaptic and behavioral plasticity, allowing animals to flexibly update their associations in a dynamic environment.

摘要

动物依靠环境事件的相对时间来形成和更新预测性关联,但这种时间敏感性的分子和电路机制仍不完全清楚。在这里,我们表明,果蝇的嗅觉关联可以根据气味线索和多巴胺强化之间的时间关系,在每次试验的基础上进行写入和反转。通过同步记录神经活动和行为,我们表明,学习到的气味吸引力的反转与蘑菇体(果蝇的关联嗅觉中心)中的双向神经可塑性相关。两种多巴胺受体,DopR1 和 DopR2,通过与不同的第二信使偶联并指导突触抑制或增强,对这种时间敏感性作出贡献。我们的研究结果揭示了多巴胺受体信号通路如何检测事件的顺序,以指示相反形式的突触和行为可塑性,使动物能够在动态环境中灵活地更新它们的关联。

相似文献

1
Distinct Dopamine Receptor Pathways Underlie the Temporal Sensitivity of Associative Learning.
Cell. 2019 Jun 27;178(1):60-75.e19. doi: 10.1016/j.cell.2019.05.040. Epub 2019 Jun 20.
2
Dopamine Receptor DAMB Signals via Gq to Mediate Forgetting in Drosophila.
Cell Rep. 2017 Nov 21;21(8):2074-2081. doi: 10.1016/j.celrep.2017.10.108.
3
A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila.
Neuron. 2019 Nov 6;104(3):544-558.e6. doi: 10.1016/j.neuron.2019.07.028. Epub 2019 Aug 27.
4
The role of dopamine in Drosophila larval classical olfactory conditioning.
PLoS One. 2009 Jun 12;4(6):e5897. doi: 10.1371/journal.pone.0005897.
5
Concerted Actions of Octopamine and Dopamine Receptors Drive Olfactory Learning.
J Neurosci. 2020 May 20;40(21):4240-4250. doi: 10.1523/JNEUROSCI.1756-19.2020. Epub 2020 Apr 10.
6
Cyclic AMP-dependent plasticity underlies rapid changes in odor coding associated with reward learning.
Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):E448-E457. doi: 10.1073/pnas.1709037115. Epub 2017 Dec 28.
7
Dopamine is required for learning and forgetting in Drosophila.
Neuron. 2012 May 10;74(3):530-42. doi: 10.1016/j.neuron.2012.04.007.
8
Neural Correlates of Odor Learning in the Presynaptic Microglomerular Circuitry in the Honeybee Mushroom Body Calyx.
eNeuro. 2018 Jun 18;5(3). doi: 10.1523/ENEURO.0128-18.2018. eCollection 2018 May-Jun.
9
Punishment prediction by dopaminergic neurons in Drosophila.
Curr Biol. 2005 Nov 8;15(21):1953-60. doi: 10.1016/j.cub.2005.09.042.
10
Models of heterogeneous dopamine signaling in an insect learning and memory center.
PLoS Comput Biol. 2021 Aug 10;17(8):e1009205. doi: 10.1371/journal.pcbi.1009205. eCollection 2021 Aug.

引用本文的文献

1
The coming decade of digital brain research: A vision for neuroscience at the intersection of technology and computing.
Imaging Neurosci (Camb). 2024 Apr 18;2. doi: 10.1162/imag_a_00137. eCollection 2024.
2
Multimodal cue integration and learning in a neural representation of head direction.
Nat Neurosci. 2025 Aug;28(8):1729-1740. doi: 10.1038/s41593-024-01823-z. Epub 2025 Jul 23.
4
Hybrid neural networks in the mushroom body drive olfactory preference in .
Sci Adv. 2025 May 30;11(22):eadq9893. doi: 10.1126/sciadv.adq9893.
5
A vector-based strategy for olfactory navigation in .
bioRxiv. 2025 Feb 16:2025.02.15.638426. doi: 10.1101/2025.02.15.638426.
6
A non-Hebbian code for episodic memory.
Sci Adv. 2025 Feb 21;11(8):eado4112. doi: 10.1126/sciadv.ado4112.
8
Driver lines for studying associative learning in .
Elife. 2025 Jan 29;13:RP94168. doi: 10.7554/eLife.94168.

本文引用的文献

1
Dopamine Neurons Mediate Learning and Forgetting through Bidirectional Modulation of a Memory Trace.
Cell Rep. 2018 Oct 16;25(3):651-662.e5. doi: 10.1016/j.celrep.2018.09.051.
2
Integration of Parallel Opposing Memories Underlies Memory Extinction.
Cell. 2018 Oct 18;175(3):709-722.e15. doi: 10.1016/j.cell.2018.08.021. Epub 2018 Sep 20.
4
Structural basis for the regulation of inositol trisphosphate receptors by Ca and IP.
Nat Struct Mol Biol. 2018 Aug;25(8):660-668. doi: 10.1038/s41594-018-0089-6. Epub 2018 Jul 16.
6
Reinforcement signaling of punishment versus relief in fruit flies.
Learn Mem. 2018 May 15;25(6):247-257. doi: 10.1101/lm.047308.118. Print 2018 Jun.
7
Cellular diversity in the midbrain revealed by single-cell transcriptomics.
Elife. 2018 Apr 19;7:e34550. doi: 10.7554/eLife.34550.
8
Dopamine Receptor DAMB Signals via Gq to Mediate Forgetting in Drosophila.
Cell Rep. 2017 Nov 21;21(8):2074-2081. doi: 10.1016/j.celrep.2017.10.108.
9
The Biology of Forgetting-A Perspective.
Neuron. 2017 Aug 2;95(3):490-503. doi: 10.1016/j.neuron.2017.05.039.
10
The Persistence and Transience of Memory.
Neuron. 2017 Jun 21;94(6):1071-1084. doi: 10.1016/j.neuron.2017.04.037.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验