EMBRAPA Genetic Resources and Biotechnology, Brasilia, DF, Brazil.
Department of Genetics, University of São Paulo, Piracicaba, SP, Brazil.
PLoS One. 2019 Jun 24;14(6):e0218747. doi: 10.1371/journal.pone.0218747. eCollection 2019.
A thorough understanding of the heritability, genetic correlations and additive and non-additive variance components of tree growth and wood properties is a requisite for effective tree breeding. This knowledge is essential to maximize genetic gain, that is, the amount of increase in trait performance achieved annually through directional selection. Understanding the genetic attributes of traits targeted by breeding is also important to sustain decade-long genetic progress, that is, the progress made by increasing the average genetic value of the offspring as compared to that of the parental generation. In this study, we report quantitative genetic parameters for fifteen growth, wood chemical and physical traits for the world-famous Eucalyptus urograndis hybrid (E. grandis × E. urophylla). These traits directly impact the optimal use of wood for cellulose pulp, paper, and energy production. A population of 1,000 trees sampled in a progeny trial was phenotyped directly or following the development and use of near-infrared spectroscopy calibration models. Trees were genotyped with 33,398 SNPs and 24,001 DArT-seq genome-wide markers and genomic realized relationship matrices (GRM) were used for parameter estimation with an individual-tree additive-dominant mixed model. Wood chemical properties and wood density showed stronger genetic control than growth, cellulose and fiber traits. Additive effects are the main drivers of genetic variation for all traits, but dominance plays an equally or more important role for growth, singularly in this hybrid. GRM´s with >10,000 markers provided stable relationships estimates and more accurate parameters than pedigrees by capturing the full genetic relationships among individuals and disentangling the non-additive from the additive genetic component. Low correlations between growth and wood properties indicate that simultaneous selection for wood traits can be applied with minor effects on genetic gain for growth. Conversely, moderate to strong correlations between wood density and chemical traits exist, likely due to their interdependency on cell wall structure such that responses to selection will be connected for these traits. Our results illustrate the advantage of using genome-wide marker data to inform tree breeding in general and have important consequences for operational breeding of eucalypt urograndis hybrids.
全面了解树木生长和木材特性的遗传力、遗传相关性以及加性和非加性方差分量是有效树木育种的必要条件。这种知识对于最大限度地提高遗传增益至关重要,即通过定向选择每年实现的性状表现的增加量。了解育种目标性状的遗传特性对于维持长达十年的遗传进展也很重要,即通过增加后代的平均遗传值与亲本世代相比来实现的进展。在这项研究中,我们报告了世界著名的桉树杂种(Eucalyptus grandis×Eucalyptus urophylla)的 15 个生长、木材化学和物理性状的数量遗传参数。这些性状直接影响用于纤维素纸浆、纸张和能源生产的木材的最佳利用。在一个后代试验中,对 1000 株树木进行了抽样,并直接对其进行表型分析,或在开发和使用近红外光谱校准模型后进行表型分析。利用 33398 个 SNP 和 24001 个 DArT-seq 全基因组标记对树木进行了基因型分析,并利用个体加性-显性混合模型的基因组实现关系矩阵(GRM)进行了参数估计。木材化学性质和木材密度的遗传控制比生长、纤维素和纤维性状更强。加性效应是所有性状遗传变异的主要驱动因素,但在这个杂种中,显性作用同样或更重要,特别是在生长方面。使用超过 10000 个标记的 GRM 提供了稳定的关系估计值和比系谱更准确的参数,通过捕获个体之间的全部遗传关系并将非加性与加性遗传成分分开,从而更好地估计遗传参数。生长和木材特性之间的相关性较低表明,同时选择木材特性可以应用于生长的遗传增益,而不会产生较小的影响。相反,木材密度与化学特性之间存在中等至强相关性,这可能是由于它们对细胞壁结构的相互依赖,因此这些性状的选择响应将相互关联。我们的结果说明了利用全基因组标记数据为一般树木育种提供信息的优势,并对桉树杂种的实际育种具有重要意义。