Bianco Rohan-Jean, Arnoux Pierre-Jean, Mac-Thiong Jean-Marc, Aubin Carl-Eric
Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Downtown Station, Montreal, Quebec H3C 3A7, Canada; Sainte-Justine University Hospital Center, 3175, Cote Sainte-Catherine Road, Montreal, Quebec H3T 1C5, Canada; Laboratoire de Biomécanique Appliquée, UMRT24 IFSTTAR/Aix-Marseille Université, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France; International Associated Lab in Biomechanics of Spine Injuries & Pathologies, France and Canada.
Laboratoire de Biomécanique Appliquée, UMRT24 IFSTTAR/Aix-Marseille Université, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France; International Associated Lab in Biomechanics of Spine Injuries & Pathologies, France and Canada.
Clin Biomech (Bristol). 2019 Aug;68:190-196. doi: 10.1016/j.clinbiomech.2019.06.010. Epub 2019 Jun 15.
Many studies have assessed the pullout fixation strength of pedicle screws, but only a few investigated the fixation strength under non-axial forces such as the ones applied with modern instrumentation techniques. The purpose is to biomechanically compare the fixation strength of different pedicle screw dimensions, bone engagement, entry point preparation and vertebra dimensions under axial pull-out and perpendicular loadings.
A finite element model of two thoracic vertebrae (T3, T8) with three different cortical bone thickness configurations (5th, 50th and 95th percentile) was used. Two bone engagements, two screw diameters and three entry point enlargement scenarios were numerically tested under an axial and four perpendicular forces (cranial, caudal, medial and lateral) until failure for a total of 180 simulations. Force-displacement responses were analyzed using ANOVA and Pareto charts to determine the individual effects of each parameter.
The screw diameter was the predominant parameter affecting the screw anchorage in all loading directions. The larger screw diameter increased by 35% the initial stiffness and force to failure. Cortical bone removal around the entry point reduced the axial and perpendicular initial stiffness (27% and 17% respectively) and force to failure (20% and 13%). Better screw anchorage was obtained with bicortical bone engagement.
The screw diameter and amount of cortical bone left around the entry point are essential for pedicle screw fixation in all loading scenarios. The proximity of the screw threads to the cortical bone (pedicle fill) has a major role in pedicle screw fixation.
许多研究评估了椎弓根螺钉的拔出固定强度,但只有少数研究调查了在非轴向力(如现代器械技术施加的力)下的固定强度。目的是在轴向拔出和垂直加载情况下,对不同椎弓根螺钉尺寸、骨结合、进针点准备和椎体尺寸的固定强度进行生物力学比较。
使用具有三种不同皮质骨厚度配置(第5、50和95百分位数)的两个胸椎(T3、T8)的有限元模型。在轴向和四个垂直力(头侧、尾侧、内侧和外侧)作用下,对两种骨结合、两种螺钉直径和三种进针点扩大情况进行数值测试,直至失效,共进行180次模拟。使用方差分析和帕累托图分析力-位移响应,以确定每个参数的个体效应。
在所有加载方向上,螺钉直径是影响螺钉锚固的主要参数。较大的螺钉直径使初始刚度和破坏力提高了35%。进针点周围的皮质骨去除降低了轴向和垂直方向的初始刚度(分别降低27%和17%)以及破坏力(分别降低20%和13%)。双侧皮质骨结合可获得更好的螺钉锚固效果。
在所有加载情况下,螺钉直径和进针点周围剩余的皮质骨量对于椎弓根螺钉固定至关重要。螺钉螺纹与皮质骨的接近程度(椎弓根填充)在椎弓根螺钉固定中起主要作用。