School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, W Yorkshire, LS2 9JT, UK.
School of Geography, University of Leeds, Woodhouse Lane, Leeds, W Yorkshire, LS2 9JT, UK.
Environ Sci Pollut Res Int. 2019 Aug;26(24):24863-24884. doi: 10.1007/s11356-019-05525-z. Epub 2019 Jun 25.
Viruses and bacteria which are characterized by finite lives in the subsurface are rapidly transported via fractures and cavities in fractured and karst aquifers. Here, we demonstrate how the coupling of a robust outcrop characterization and hydrogeophysical borehole testing is essential for prediction of contaminant velocities and hence wellhead protection areas. To show this, we use the dolostones of the Permian Magnesian Limestone aquifer in NE England, where we incorporated such information in a groundwater flow and particle tracking model. Within this aquifer, flow in relatively narrow (mechanical aperture of ~ 10-1 mm) fractures is coupled with that in pipe cavities (~ 0.20-m diameter) following normal faults. Karstic cavities and narrow fractures are hydraulically very different. Thus, the solutional features are represented within the model by a pipe network (which accounts for turbulence) embedded within an equivalent porous medium representing Darcian flowing fractures. Incorporation of fault conduits in a groundwater model shows that they strongly influence particle tracking results. Despite this, away from faulted areas, the effective flow porosity of the equivalent porous medium remains a crucial parameter. Here, we recommend as most appropriate a relatively low value of effective porosity (of 2.8 × 10) based on borehole hydrogeophysical testing. This contrasts with earlier studies using particle tracking analyses on analogous carbonate aquifers, which used much higher values of effective porosity, typically ~ 10 times higher than our value, resulting in highly non-conservative estimates of aquifer vulnerability. Low values of effective flow porosities yield modelled flow velocities ranging from ~ 100 up to ~ 500 m/day in un-faulted areas. However, the high fracturing density and presence of karstic cavities yield modelled flow velocities up to ~ 9000 m/day in fault zones. The combination of such flow velocities along particle traces results in 400-day particle traces up to 8-km length, implying the need for large well protection areas and high aquifer vulnerability to slowly degrading contaminants.
具有有限地下生存能力的病毒和细菌通过断裂带和岩溶含水层中的裂缝和空洞迅速迁移。在这里,我们展示了如何将稳健的露头特征描述和水文地球物理钻孔测试相结合,对于预测污染物速度和因此保护井口区域是至关重要的。为了展示这一点,我们使用了英格兰东北部二叠纪白云岩含水层中的白云岩,我们将这些信息纳入了地下水流动和粒子追踪模型中。在这个含水层中,相对较窄(机械开度约为 10-1 毫米)的裂缝中的流动与正断层后的管道洞穴(直径约 0.20 米)中的流动相结合。岩溶洞穴和狭窄裂缝在水力上有很大的不同。因此,模型中通过一个管网(代表湍流)来表示溶蚀特征,管网嵌入代表达西流动裂缝的等效多孔介质中。在地下水模型中纳入断层管道表明,它们强烈影响粒子追踪结果。尽管如此,在远离断层区的地方,等效多孔介质的有效流动孔隙率仍然是一个关键参数。在这里,我们建议根据钻孔水文地球物理测试,将相对较低的有效孔隙率(2.8×10)作为最适合的值。这与使用类似碳酸盐含水层的粒子追踪分析的早期研究形成对比,早期研究使用的有效孔隙率要高得多,通常比我们的值高约 10 倍,导致对含水层脆弱性的高度非保守估计。低有效流动孔隙率导致在无断层区的模拟流速范围从 100 到 500 米/天。然而,高断裂密度和岩溶洞穴的存在导致在断层带的模拟流速高达 9000 米/天。沿着粒子轨迹的这种流动速度的组合导致 400 天的粒子轨迹长度达到 8 公里,这意味着需要较大的井口保护区域和对缓慢降解污染物的高含水层脆弱性。