Suppr超能文献

等尺寸二元液滴的正碰模式。

Regimes of Head-On Collisions of Equal-Sized Binary Droplets.

作者信息

Zhang Yi Ran, Luo Kai H

机构信息

Center for Combustion Energy, Department of Energy and Power Engineering, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education , Tsinghua University , Beijing 100084 , China.

Department of Mechanical Engineering , University College London , Torrington Place , London WC1E 7JE , U.K.

出版信息

Langmuir. 2019 Jul 9;35(27):8896-8902. doi: 10.1021/acs.langmuir.8b04277. Epub 2019 Jun 24.

Abstract

Through molecular dynamics simulations, head-on collision processes of two identical droplets with a diameter of 10.9 nm are elaborately scrutinized over a wide range of impact Weber numbers (from 6.7 to 1307) both in vacuum and in an ambient of nitrogen gas. As the impact Weber number exceeds a certain critical value, a hole or multiple holes in apparently random locations are observed in the disklike structure formed by two colliding droplets. We name this a new "hole regime" of droplet collisions, which has not yet been reported in previous studies. As the impact Weber number increases, the number of holes increases. The hole or holes may disappear unless a second critical impact Weber number is exceeded, when the merged droplet is likely to experience dramatic shattering. It is also found that the existence of ambient gas provides a "cushion effect" which resists droplet deformation, thus delaying or even preventing the appearance of hole formation and shattering regimes. Moreover, increasing ambient pressure suppresses hole formation. A model based on energy balance is proposed to predict droplet behaviors, which provides a more accurate estimate of the maximum spreading factor compared to previous models. Finally, we further extend the current nanoscale droplet collision regime map and analyze the similarities and dissimilarities between nano- and macroscale droplet collision. Our study extends the current understanding on nanodroplet collisions.

摘要

通过分子动力学模拟,在真空和氮气环境中,对两个直径为10.9纳米的相同液滴在广泛的冲击韦伯数范围(从6.7到1307)下的正面碰撞过程进行了详细研究。当冲击韦伯数超过某个临界值时,在由两个碰撞液滴形成的盘状结构中会在明显随机的位置观察到一个或多个孔洞。我们将此命名为液滴碰撞的一种新的“孔洞状态”,这在以前的研究中尚未报道。随着冲击韦伯数增加,孔洞数量增多。除非超过第二个临界冲击韦伯数,否则这些孔洞可能会消失,此时合并后的液滴可能会经历剧烈破碎。还发现环境气体的存在提供了一种“缓冲效应”,它会抵抗液滴变形,从而延迟甚至阻止孔洞形成和破碎状态的出现。此外,增加环境压力会抑制孔洞形成。提出了一个基于能量平衡的模型来预测液滴行为,与先前的模型相比,该模型能更准确地估计最大铺展因子。最后,我们进一步扩展了当前的纳米尺度液滴碰撞状态图,并分析了纳米尺度和宏观尺度液滴碰撞之间的异同。我们的研究扩展了目前对纳米液滴碰撞的认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a73/7007249/5f48ad59112e/la8b04277_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验