Suppr超能文献

传染病宿主内和宿主间关联模型及数据:一项系统综述

Linked within-host and between-host models and data for infectious diseases: a systematic review.

作者信息

Childs Lauren M, El Moustaid Fadoua, Gajewski Zachary, Kadelka Sarah, Nikin-Beers Ryan, Smith John W, Walker Melody, Johnson Leah R

机构信息

Department of Mathematics, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA.

Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA.

出版信息

PeerJ. 2019 Jun 19;7:e7057. doi: 10.7717/peerj.7057. eCollection 2019.

Abstract

The observed dynamics of infectious diseases are driven by processes across multiple scales. Here we focus on two: within-host, that is, how an infection progresses inside a single individual (for instance viral and immune dynamics), and between-host, that is, how the infection is transmitted between multiple individuals of a host population. The dynamics of each of these may be influenced by the other, particularly across evolutionary time. Thus understanding each of these scales, and the links between them, is necessary for a holistic understanding of the spread of infectious diseases. One approach to combining these scales is through mathematical modeling. We conducted a systematic review of the published literature on multi-scale mathematical models of disease transmission (as defined by combining within-host and between-host scales) to determine the extent to which mathematical models are being used to understand across-scale transmission, and the extent to which these models are being confronted with data. Following the PRISMA guidelines for systematic reviews, we identified 24 of 197 qualifying papers across 30 years that include both linked models at the within and between host scales and that used data to parameterize/calibrate models. We find that the approach that incorporates both modeling with data is under-utilized, if increasing. This highlights the need for better communication and collaboration between modelers and empiricists to build well-calibrated models that both improve understanding and may be used for prediction.

摘要

传染病观察到的动态变化是由多个尺度上的过程驱动的。在此我们关注两个尺度:宿主内尺度,即感染在单个个体内如何发展(例如病毒和免疫动态),以及宿主间尺度,即感染如何在宿主群体的多个个体之间传播。这两个尺度上的动态变化可能相互影响,尤其是在进化时间尺度上。因此,全面理解传染病的传播,需要了解每个尺度及其之间的联系。结合这些尺度的一种方法是通过数学建模。我们对已发表的关于疾病传播多尺度数学模型(定义为结合宿主内和宿主间尺度)的文献进行了系统综述,以确定数学模型用于理解跨尺度传播的程度,以及这些模型与数据对照的程度。按照系统综述的PRISMA指南,我们在30年的197篇合格论文中识别出24篇,这些论文包括宿主内和宿主间尺度的关联模型,并使用数据对模型进行参数化/校准。我们发现,将建模与数据相结合的方法虽然在增加,但仍未得到充分利用。这凸显了建模者和实证研究者之间加强沟通与合作的必要性,以构建校准良好的模型,既能增进理解,又可用于预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验