Department of Materials and London Centre for Nanotechnology , Imperial College London , SW7 2AZ , London , U.K.
Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering , University of Cyprus , 40 Macedonias Avenue , Latsia 2238 , Cyprus.
ACS Appl Mater Interfaces. 2019 Jul 3;11(26):23083-23092. doi: 10.1021/acsami.9b08802. Epub 2019 Jun 19.
Metal-enhanced fluorescence (MEF), resulting from the near-field interaction of fluorophores with metallic nanostructures, has emerged as a powerful tool for dramatically improving the performance of fluorescence-based biomedical applications. Allowing for lower autofluorescence and minimal photoinduced damage, the development of multifunctional and multiplexed MEF platforms in the near-infrared (NIR) windows is particularly desirable. Here, a low-cost fabrication method based on nanosphere lithography is applied to produce tunable three-dimensional (3D) gold (Au) nanohole-disc arrays (Au-NHDAs). The arrays consist of nanoscale glass pillars atop nanoholes in a Au thin film: the top surfaces of the pillars are Au-covered (effectively nanodiscs), and small Au nanoparticles (nanodots) are located on the sidewalls of the pillars. This 3D hole-disc (and possibly nanodot) construct is critical to the properties of the device. The versatility of our approach is illustrated through the production of uniform and highly reproducible Au-NHDAs with controlled structural properties and tunable optical features in the NIR windows. Au-NHDAs allow for a very large NIR fluorescence enhancement (more than 400 times), which is attributed to the 3D plasmonic structure of the arrays that allows strong surface plasmon polariton and localized surface plasmon resonance coupling through glass nanogaps. By considering arrays with the same resonance peak and the same nanodisc separation distance, we show that the enhancement factor varies with nanodisc diameter. Using computational electromagnetic modeling, the electric field enhancement at 790 nm was calculated to provide insights into excitation enhancement, which occurs due to an increase in the intensity of the electric field. Fluorescence lifetime measurements indicate that the total fluorescence enhancement may depend on controlling excitation enhancement and therefore the array morphology. Our findings provide important insights into the mechanism of MEF from 3D plasmonic arrays and establish a low-cost versatile approach that could pave the way for novel NIR-MEF bioapplications.
金属增强荧光(MEF)源于荧光团与金属纳米结构的近场相互作用,已成为显著提高基于荧光的生物医学应用性能的强大工具。在近红外(NIR)窗口中,开发多功能和多路复用的 MEF 平台尤其理想,因为其可以允许更低的自发荧光和最小的光诱导损伤。本文应用基于纳米球光刻的低成本制造方法来制备可调谐的三维(3D)金(Au)纳米孔盘阵列(Au-NHDAs)。该阵列由纳米孔上方的纳米级玻璃柱和金薄膜中的纳米孔组成:柱子的顶部表面被 Au 覆盖(有效是纳米盘),并且在柱子的侧壁上存在小的 Au 纳米颗粒(纳米点)。这种 3D 孔盘(和可能的纳米点)结构对于器件的性能至关重要。通过生产具有受控结构特性和可调谐光学特性的均匀且高度可重复的 Au-NHDAs,展示了我们方法的多功能性,这些特性在 NIR 窗口中得到了体现。Au-NHDAs 允许非常大的 NIR 荧光增强(超过 400 倍),这归因于阵列的 3D 等离子体结构,该结构允许通过玻璃纳米间隙实现强表面等离子体激元和局域表面等离子体共振耦合。通过考虑具有相同共振峰和相同纳米盘分离距离的阵列,我们表明增强因子随纳米盘直径而变化。通过使用计算电磁建模,在 790nm 处计算了电场增强,以提供有关激发增强的见解,这种增强是由于电场强度的增加而发生的。荧光寿命测量表明,总荧光增强可能取决于控制激发增强,因此取决于阵列形态。我们的发现为 3D 等离子体阵列的 MEF 机制提供了重要的见解,并建立了一种低成本多功能方法,为新型 NIR-MEF 生物应用铺平了道路。